
BEST PRACTICES
FOR DATA MANAGEMENT
IN ARTIFICIAL INTELLIGENCE
APPLICATIONS
OCTOBER 2023

- 2 -

AUTHORS
Dr. Abdelrahman AlMahmoud
Ahmad AlRubaie
Dr. Ahmed AlDhanhani
Dr. Anis Ouali
Dr. Di Wang
Dr. Dymitr Ruta
Prof. Ernesto Damiani
Dr. Kin Poon
Maryam AlShehhi
Maurizio Colombo
Musab AlHammadi
Nathan Eden
Dr. Rasool Asal
Dr. Siddhartha Shakya

BEST PRACTICES
FOR DATA MANAGEMENT
IN ARTIFICIAL INTELLIGENCE
APPLICATIONS

NATIONAL PROGRAM FOR ARTIFICIAL INTELLIGENCE

- 3 -

5

 FORWARD

6-23

1 INTRODUCTION
1.1. Types of Data
1.2. Data Quality
1.3 The AI-Ml Life Cycle
1.4 Data Exploration
1.5 Feature Selection
1.6 Model Deployment
1.7 Regulatory Issues of Data

Management
1.8 Summary

24-45

2 DATA INGESTION
2.1 Sources of Data
2.2 Data Collection/Ingestion
2.3 Data Storage
2.4 AI Data Storage
2.5 Data Representation Standards
2.6 Representation Standards for Web

Data
2.7 Data Representation in Key Vertical

Domains
2.8 Data Representation for

Bioinformatics
2.9 Data Representation for Smart

Cities
2.10 Data Representation for Intelligent

Manufacturing
2.11 Recommendations
2.12 Big Data Systems

46-51

3 DATA EXPLORATION
3.1 Statistical Analytics
3.2 Visual Analytics

52-67

4 DATA PREPROCESSING
4.1 Quality and Cleanness of Data
4.2 Data Cleansing
4.3 Data Normalisation
4.4 Data Encoding
4.5 Data Anonymisation
4.6 Data Labelling
4.7 Feature Selection

68-75

5 MODEL TRAINING
5.1 Training Algorithms
5.2 Automatic Organisation of Data
5.3 Generating New Data

76-81

6 PARAMETERS FOR MODEL
TUNING

6.1 Model Hyper-Parameters
6.2 Hyperparameters Optimisation

Strategies
6.3 Transfer Learning

82-89

7 MODEL ADAPTATION,
DEPLOYMENT AND MAINTENANCE

7.1 Model Deployment
7.2 Model Maintenance
7.3 Data Disclosure Risks and

Differential Privacy in Model
Deployment

90-97

8 CASE STUDIES
8.1 Case Study 1: Automatic Detection

of Traffic Incidents
8.2 Case Study 2: Social Media (X)

Analysis

98-102

9 OTHER AI TECHNIQUES
9.1 Predicting Trends from Data
9.2 Retrieving the Right Information

from Large Repositories
9.3 AI Optimisation and Data

- 4 -

- 5 -

FORWARD

In recent months, we have witnessed a rapid growth in the development
of artificial intelligence technologies, which are now deeply ingrained in
numerous aspects of our lives. These advancements have the potential to
transform industries, streamline processes, and improve the overall quality
of life. However, the deployment of AI models is not without its challenges,
and effective data management is at the forefront of these challenges.

This guide offers a comprehensive overview of the data managment pro-
cess for data owners and organizations seeking to develope and deploy AI
models. It delves into the intricacies of data assets, their role in the life cycle
of AI models, and the best practices for their collection, storage, processing,
and usage. Furthermore, it addresses the common pitfalls in using unsuita-
ble data, highlighting the importance of ensuring high data quality.

As we continue to navigate the ever-evolving world of AI, it is essential that
we remain mindful of the importance of ethical considerations of using
data in AI systems. This guide serves as a critical resource to ensure that
AI models are designed, implemented, and operationalized in a responsible
and sustainable manner.

It is my hope that this guide will empower organizations and individuals to
make informed decisions when implementing AI systems, ultimately con-
tributing to the responsible and effective deployment of this transformative
technology.

Omar Sultan AlOlama
Minister of State for Artificial Intelligence, Digital Economy and Remote Work Applications

- 6 -

Artificial intelligence (AI) systems have become a reality and affect our lives
in many important ways. Data are at the core of artificial intelligence and
machine learning (AI-ML) models; they are the main resource which enables
AI-ML models to learn and evolve, allowing them to solve classification,
prediction and anomaly detection tasks. Collecting, preparing and manag-
ing the data assets needed to train and deploy effective AI-ML models is a
challenge. It is important that performance is achieved while making sure
that AI-ML models abide by data protection regulations. Data usage is a
fundamental aspect to consider when AI-ML systems are designed, imple-
mented and operationalised. Being aware of data management problems
allows organisations and individuals to understand and follow how their
data are collected, transmitted, stored, processed and exploited by AI-ML-
powered systems. Anyone who plans to implement such systems should be
fully aware of all challenges related to data management in order to ensure
consistent and sustainable AI-ML deployment.

This document is for data owners and organisations wishing to adopt and
deploy AI-ML models using these data. It discusses how data assets are
used in the AI-ML models’ life cycle and highlights the best practices for
using them.

Throughout the document, the term data will be used to define the rep-
resentation of facts, measurements and various other types of information,
while the term data asset will designate the incarnation of data in a format
that is suitable for management, storage and processing within information
and communication technology (ICT) systems. The document presents data
management practices starting from the life cycle of AI-ML models that rely
on such data. Indeed, one of the most common pitfalls is to use data that
are not suitable for a given stage of AI-ML model development, or data that
are not suitable at all, and then expect reasonable performance. It is impor-
tant to realise that increasing data quantity does not usually mitigate the
problem of having low-quality data. As an introduction to the overall data
landscape, the next section provides a short introduction to data types.
Then the chapter describes a reference life cycle for AI-ML models, which
will be used throughout the document to map data assets to AI-ML models’
development stages, explain the role of the data assets and describe the
best practices for their collection and management.

INTRODUCTION1

- 7 -

- 8 -

1.1 TYPES OF DATA

Data can be classified into two main categories, based on the way they are
organised. The first category is structured data, which is data formatted in
such a way that each data item has the same standard, predefined struc-
ture, usually described via metadata.

Structured data are easy to index, search and manipulate due to their
predefined structure. Typical examples of structured data are relational da-
tabases, where data entities (e.g., the employees of a company) are repre-
sented by tables whose rows correspond each to a data item (the individual
employee), while columns represent attributes (e.g., each employee’s name,
age, gender). Attributes belong to elementary data types1 (e.g., integer, date,
string and timestamps). The structure of each table is described by an es-
sential metadata item, called the database’s schema.

The second data category is unstructured data, where each data item can
have a different format and size, without a clear predefined structure. Un-
structured data are usually more difficult to deal with, because they require
preprocessing to extract key information from them. Examples of unstruc-
tured data range from text documents and web pages to audio recordings.
Advanced techniques such as natural language processing (NLP) allow for
the extraction of key information from unstructured text.

For both data categories, we can distinguish between numerical and cat-
egorical attributes. This distinction is of capital importance for data rep-
resentation and for later processing.

1. Besides elementary data types like strings and integers, structured data items can also belong to complex types, like the nested records
used for log file entries.

- 9 -

1.2 DATA QUALITY

A well-known saying in the realm of computing is ‘garbage in, garbage out’,
meaning that if you feed any system or algorithm with low-quality data, the
output will also be of low quality. AI-ML systems are no exception: they are
not able to magically extract valuable insight from low-quality data, nor can
they perform well without large quantities of high-quality data. Let us now
list and describe some types of low-quality data that, when fed to AI-ML
models, usually result in poor-quality output.

• Redundant, Outdated or Trivial (ROT) data. It is very easy and common
to duplicate data or have the same (or similar) data collected by multiple
entities. While the size of data is an important factor, redundant data are
not useful for AI applications. Having diverse and comprehensive data is
much more effective for AI-ML applications than a large set of redundant
data.

• Dark Data. This term refers to data collected and stored by an organiza-
tion but never used. Often, data ends up unused because it is collected
without a clear purpose, clobbering up the ICT infrastructure of organ-
izations that do not have the proper skill level to use the data or cannot
make the resource and time investment to tap into it. Other times, dark
data originate from data collection procedures carried out carelessly,
without upholding any collection best practice or standard. Dark data do
not just lay dormant: they can become harmful to organizations. Indeed,
storing dark data and maintaining the platforms that host them may
have a non-negligible cost. While there is no clear answer on how to deal
with dark data, simply deleting them can often save organizations time
and money.

Generally speaking, it is possible to consider data quality as a series of di-
mensions describing the quality of the information fed to (and produced by)
an AI-ML model; that is, a measure of the success of the system utilizing
this information. Therefore, both input and output data can be considered
products with a certain quality. We now list a few aspects of data quality
that should be pursued when selecting raw data. The most common ones
are completeness, consistency, fitness for use, relevance and timeliness.
For the purposes of this document, two additional aspects of data quality
are significant: uncertainty and vagueness, which can be seen as two dif-
ferent aspects of indeterminacy, i.e. how much it is known about the con-
sequences of exchanging a data item. Uncertainty is mainly related to the

- 10 -

error or imprecision associated with raw data, while vagueness is an inher-
ent issue of categorical values (for example, in the sentence “long text”, how
many characters does “long” mean?). In the case of information expressed
as text, one can distinguish between uncertainty due to the writing style
(imprecision, vagueness, polysemy) and uncertainty due to the text content
(for example “Mary gave Sally her book”).

- 11 -

1.3 THE AI-ML LIFE CYCLE

We are now ready to discuss the different data assets generated and used
by AI-ML applications. Our discussion will be driven by a basic notion of
systems engineering: the development life cycle, which is used to designate
the process of planning, developing, testing and deploying an information
system. The AI-ML applications life cycle (in short, the AI-ML life cycle) de-
fines the phases that organisations follow to take advantage of supervised
machine learning (ML) models to derive practical business value. Most of
these stages use and/or generate specific data assets, whose careful man-
agement is the goal of this document. The AI-ML life cycle covers only a part
of the AI applications landscape; other types of AI models will be discussed
in Section 9. Figure1 shows the different stages of the AI-ML life cycle.

In this chapter, we provide a short definition of each stage and outline the
individual steps it involves (‘Phase in a Nutshell’). For the sake of clarity, we
also present an instance of each stage within the framework of a running
example concerning a sample AI-ML application. We start by providing a
general description of the running example. Then, for each phase of the AI-
ML life cycle, we will provide a short description of the phase in the context
of our running example (under the title ‘Phase in Our Running Example’).
This description should help the reader to understand which data assets
are concretely needed at each phase and how they are used.

Model
Adaptation

Figure 1:

The AI-ML Life Cycle

Data
Exploration

Model
Tuning

Feature
Selection

Model
Training

Data
Ingestion

Business
Requirements

Model
Deployment/
Maintenance

Data Pre-
Processing

- 12 -

1.3.1 A Running Example for the AI-ML Life Cycle
The ACME oil field services company wants to prevent the failure of its
mechanical equipment. ACME uses a high-speed rotating machine (in-
ternally called a type-A rotatory) to mix components with water to make
a frothy mix used to produce shale gas. Rotating machines of type A run
for weeks without interruptions, leading to frequent breakdowns. The
need to find a solution to predict failure of the equipment is dire, since
it is a critical component for oil and gas exploration. ACME intends to
develop a AI-ML model called a binary predictor2 that will run continu-
ously and assign to each ACME rotating machine a label regarding the
next failure (either IMMINENT or NOT-IMMINENT). Machines labelled IM-
MINENT are to be immediately stopped for maintenance in the hope that
their downtime due to maintenance will be shorter than the downtime
that would result from breakdown. The performance of the AI predictor
will be validated by comparing the total downtime with the AI predictor
in operation to downtime without the predictor, obtained from historical
data. Any change (positive or negative) observed when using the AI pre-
dictor will indicate the performance gain or loss.

1.3.2 Business Goal Definition
Before carrying out any development or deployment of AI applications,
it is important that all stakeholders fully understand the business con-
text of the AI application and the data required to achieve the AI appli-
cation’s business goals, as well as the business metrics to be used to
assess the degree to which these goals have been achieved.

Business Goal Definition Phase in a Nutshell: Identify the business purpose of
the AI-ML model. Link the purpose with the question to be answered by the AI
model. Identify the model type based on the question.

Business Goal Definition in Our Running Example: Using a standard technique
for management decisions like the goal-question-metrics approach, ACME
management can specify the business objectives of the planned AI applica-
tion as follows. Goal: Decrease the downtime of rotating machines of type A.
Question: Is predictive maintenance of type-A equipment before its (estimated)
failure time more cost- and downtime-effective than reactive maintenance af-
ter breakdown? Metrics: The total cost of operation for type-A equipment.

1.3.3 Data Ingestion
Data ingestion is the AI life cycle stage where data are obtained from
multiple sources to compose data records, for immediate use or for
storage in order to be accessed and used later. Data ingestion lies at

2. Binary predictors are techniques that process input data and output one of two possible choices (yes or no, 0 or 1, IMMINENT or NOT
IMMINENT).

- 13 -

the basis of all AI applications. Data can be ingested directly from their
sources as they are generated (streaming) or via periodically importing
blocks of data called batches. Indeed, stream and batch data ingestion
can be active in the same AI application simultaneously. For example,
the licence plates of cars entering a parking lot can be ingested one
by one to check them against a stolen cars database, while batches
of the same data are collected periodically for computing the parking
lot’s average occupancy. An important data management procedure
performed at ingestion time is data filtering or access control. This pro-
cedure selects data to be ingested, depending on their privacy status
(personal/non-personal data, consent given for a given purpose, etc.).
We will deal with these issues in detail in Sect. 1.7. For now, we only re-
mark that it is good practice at ingestion time to apply some anonymity
preservation techniques, taking into account the achievable trade-off
between the impact of potential disclosure and the accuracy of the
analysis to be computed on the data3.

Data Collection/Ingestion Phase in a Nutshell: Identify the input data to be
collected and the corresponding annotation metadata. Organise ingestion ac-
cording to the AI application requirements, importing data in a stream, batch or
hybrid fashion.

Data Collection/Ingestion Definition in Our Running Example: In the fault predic-
tion application for rotating machines, a stream of sensor data must be ingested
about the operation of each rotatory (serial number, working conditions [round/
min], input power [kw], input mass [kg], output). Batch ingestion is also needed
(usually via a separate database query) for the corresponding context (meta)
data: equipment brand, model, serial number, procurement info (supplier, date
of construction, date of delivery), installation data (installer, date of installation,
installation details). ACME chooses an ingestion mechanism that follows a Π
architecture.

3. For multimedia data sources, access control rather than being based on filtering may follow a digital rights management approach where
some proof-of-hold are negotiated with the data owner’s license servers before ingesting the data.

Storage

Platforms

Database

Grouped
 data sources

1 data source

No SQL

Subtopic

Periodicity

Size

on-premises

Cloud

Micro Batching

SQL

Acquisition

Collection

Local

Data Lake

Batch

Streaming

Focus Group

Surveys

Questionnaires

Interviews

Data
Ingestion

Figure 2:

The Ingestion Mechanism

- 14 -

1.4 DATA EXPLORATION

Data exploration is the stage where insights start to be taken from ingested
data. While this stage may be skipped in some AI applications where data
are well understood, it is often a crucial (and very time-consuming phase)
of the AI-ML life cycle. At this stage, it is critical to distinguish between
numerical and categorical data. Numerical data lends itself to plotting and
allows for computing descriptive statistics and verifying if data fit simple
parametric distributions like the Gaussian one. Missing data values can also
be detected and handled at the exploration stage.

Data Validation/Exploration in a Nutshell: It is always advisable to plot data after
ingestion, to obtain a multidimensional view of all the components of each data
vector. Also, it is useful to verify if data fit a known statistics distribution, either by
component (monovariate distribution) or as vectors (multivariate distribution), and
estimate the corresponding statistic parameters.

Data Validation/Exploration in Our Running Example: ACME data scientists will
periodically plot sensed data about multiple pieces of equipment (e.g., the rounds-
per-minute and power consumption variables) and fit the data to a bivariate statis-
tical distribution (e.g., a Gaussian or power-log distribution). If the statistical tests
confirm data belong to a distribution, they will display the distribution’s param-
eters, for instance the standard deviation σ, and highlight ‘three-sigma’ outliers
(e.g., the machines whose rotation speed values lie outside an interval of three
sigmas around the average).

1.4.1 Data Pre-Processing
Data preprocessing can be the most critical stage of the life cycle. At
this stage, techniques are employed to clean, integrate and transform
the data, resulting in an improved data quality that will save time dur-
ing the analytic models’ training phase and promote better quality of
results. Data cleaning is used to correct inconsistencies, remove noise
and anonymise data. Data integration puts together data coming from
multiple sources, while data transformation prepares the data for feed-
ing an AI-ML model, typically by encoding it in a numerical format. A
typical encoding is one-hot encoding used to represent categorical var-
iables as binary vectors. This encoding first requires categorical values

Simple
 Statistics

Visualisation

Frequency Count

Multivariate Analysis

Histograms

Correction Maps

Mean and Variance

Pareto Analysis

Data
Exploration

Discrete

Continuous

Variables

Numerical

Ordinal

Categorical

Figure 3:

The Data Exploration Procedure

- 15 -

to be mapped to integer values. Then, each integer value is represented
as a binary vector that is all zero values except the position of the inte-
ger, which is marked with a 1. Figure4 below shows one-hot encoding of
categorical data expressing colours.

Once converted to numbers, data can be subject to further types of
transformation: rescaling, standardisation, normalisation and labelling.
Rescaling expresses numerical data in a suitable representation unit
(e.g., from tons to kilograms). Standardisation puts data in a standard
format, and normalisation maps data to a compact representation in-
terval (e.g., the interval [0, 1], by dividing all values by the maximum). La-
belling (done by human experts or by another AI application) associates
each data item to a category or a prediction. At the end of this process,
a numerical data set is obtained, which will be the basis for training,
testing and evaluating the AI model.

Data pre-processing in a Nutshell: Convert ingested data to a metric (numer-
ical) format, integrate data from different sources, handle missing/null values
by interpolation, increase density to reduce data sparsity, de-noise, filter　out
outliers, change representation interval. Anonymize the data.

Data Preprocessing in Our Running Example: After having ingested the sensor
data about the rotating machines, the ACME AI-ML application interpolates
any missing value about equipment rotation speed and power consumption to
achieve a uniform samples/time unit rate. The application integrates sensed
data about rotation speed and power with data about external temperature
and atmospheric pressure at the same time obtained from an open data ser-
vice; then, it normalizes the data vectors, and adds to each data vector labels
IMMINENT NOTIMMINENT representing the expected time to next failure. Also,
it deletes the human operator code from the data to make　sure they do not
reference personal information.

COLOUR
RED
RED

YELLOW
GREEN

YELLOW

RED YELLOW GREEN

1 0 0

1 0 0

0 1 0

0 1 1

Figure 5:

The Data Pre Processing Procedure

Figure 4:

One-Hot Encoding

Training Set

Evaluation Set

Testing Set
Encoding Categorical Features

Normalization

Scaling

Discretization

Standardization

Data Pre-
ProcessingIntegration

Transformatkon

Labeling

Cleaning

- 16 -

1.5.1 ML Model Selection
This stage performs the selection of the best AI-ML model or algorithm
for analysing the ingested and preprocessed data. Finding the ‘right’
AI-ML model to solve a business problem or achieve a business goal
is a challenge, often subject to trial and error. Based on the business
goal and the type of available data, different types of AI techniques can

Feature
Selection

Factor Analysis

Search

Labelled Data

Wrapper

Unsupervised

Embedded

Filter

Supervised

Figure 6:

The Feature Extraction Procedure

1.5 FEATURE SELECTION

Feature selection is the stage of the life cycle where the number of compo-
nents of the data vectors (also called features or dimensions) is reduced,
by identifying the components that are believed to be the most meaningful
for the AI model. The result of this phase is a reduced data set, as each
data vector has fewer components than before. Besides the computational
cost reduction, feature selection can help in obtaining more accurate mod-
els. Additionally, models built on top of lower dimensional data are more
understandable and explainable. This stage can also be embedded in the
model-building phase, to be discussed in the next section.

Feature selection in a Nutshell: Identify the dimensions of the data set that ac-
count for a global parameter (e.g., the overall variance of the labels). Project data
set along these dimensions, discarding the others.

Feature Selection in Our Running Example: In the predictive maintenance applica-
tion, the ACME data scientists project the vectors of the data set on the subset of
dimensions that maximises input variance4. As inputs are mostly numerical data
(like the engines’ power consumption and rotation speed), ACME data scientists
use the principal component analysis (PCA) method. If inputs had been categori-
cal, multiple correspondence analysis could have been used to represent categor-
ical data as points in a low-dimensional vector space.

4. In statistics, (sample) variance is the average of the squared differences between sample values and the sample’s average. It meas-
ures how far a set of numbers is spread out from their average value.

- 17 -

be used. It is important to remark that model selection may trigger a
transformation of the input data, as different AI models require differ-
ent numerical encoding of the input data vectors. Two major categories
are supervised learning and unsupervised learning models, the latter in-
cluding clustering and reinforcement learning. Supervised techniques
deal with labelled data: the AI-ML model is used to learn the mapping
between input examples and the target outputs. Supervised models
can be designed as classifiers, whose aim is to predict a class label, and
regressors, whose aim is to predict a numerical value function of the
inputs (e.g., a counter). Unsupervised techniques extract relations from
unlabelled training data, with the aim of organising them into groups
(clusters, highlighting associations among data, summarising data dis-
tribution and reducing data dimensionality [this last already mentioned
as a goal of data preparation]).

Reinforcement learning is typically less data dependent: it maps situa-
tions with actions, learning behaviours that will maximise a reward.

AI-ML models of different types can be composed using composition
methods (e.g., by taking the majority of their outputs)5.

AI Model Selection in a Nutshell: Choose the type of AI model most suitable for
the application. Encode the data input vectors to match the model’s preferred
input format.

AI Model Selection in Our Running Example: For associating an IMMINENT or
NOT-IMMINENT label to each data vector about the type-A rotating machines,
ACME data scientists choose a multidimensional, supervised AI model with
memory, as they realise that fault events depend on the history of each piece
of equipment and not only on the current values of the input. They choose a
two-dimensional long short-term recurrent neural network (2D RNN). They com-
pute one-hot encoding of the categorical inputs and map the input data vectors
(dimension n) into 2D tensors (i.e., bi-dimensional matrices with dimensions h, k
and h + k = n).

5. Model composition techniques, also called ensemble techniques, include bagging, bootstrapping, boosting and stacking. Detailed
discussion of ensemble techniques is beyond the scope of this document.

Figure 7:

The Model Selection Procedure

Ensemble
Factor Analysis

Boosting

Regression

Association
Stacking

Density Estimation

Clustering
Bagging

Clustering

Unsupervised

Reinforcement

Supervised Model
Selection

- 18 -

1.5.2 Model Training
When the selected AI analytic is an ML model, the latter must go through
a training phase, where internal model parameters like weights and bias
are learned from data. The training phase will feed the ML model with
batches of input vectors and will use a learning function to adapt the
model’s internal parameters (weights and bias) based on a linear or
quadratic measure of the difference between the model’s output and
the labels. Often, the available data set is partitioned at this stage into
a training set, used for setting the model’s parameters, and a test set,
where error is only recorded in order to assess the model’s performance
outside the training set. Cross-validation schemes randomly partition
the data set multiple times into a training and a test portion of fixed
sizes (e.g., 80% and 20% of the available data) and then repeat training
and validation phases on each partition.

AI Model Training in a Nutshell: Select and apply a training algorithm to modify
the chosen model according to training data. Validate the model training on test
set according to a cross-validation strategy.

AI Model Training in Our Running Example: Train the 2D RNN model for type-A
equipment failure prediction via a small batch gradient descent algorithm with
L2 loss function on the training set. Use the 80-20 cross-validation strategy.

1.5.3 Model Tuning
Certain mathematical parameters define the high-level behaviour of ML
models during training, such as the learning function or modality men-
tioned above. It is important to know that these parameters, often called
hyperparameters, cannot be learned from input data. They need to be
set up manually, although they can sometimes be tuned automatically
by searching the model parameters’ space, in practice by repeatedly
training the model, each time with a different value of hyperparame-
ters. This procedure is called hyperparameter optimisation. It is often
performed using classic optimisation techniques like grid search, but
random search and Bayesian optimisation can also be used.

For the purposes of this document, it is only important to remark that
the model tuning stage uses a special data asset (often called a valida-
tion set), which is distinct from the training and test sets we described
in the previous stages. Also, it is useful to know that a final evaluation
phase (after tuning) is sometimes carried out to estimate how the tuned
model would behave in extreme conditions, for example, when fed with
wrong/unsafe data sets. The extreme data used for the latter procedure
is called held-out data.

- 19 -

AI Model Tuning in a Nutshell: Apply model adaptation to the hyperparameters
of the trained AI model using a validation data set, according to deployment
condition.

AI Model Tuning in Our Running Example: ACME data scientists run the 2D RNN
model they trained for fault prediction on an additional validation data set and
choose the best values h and k for the RNN’s tensor dimensions. Then they es-
timate how the tuned model would behave in extreme conditions by running the
model on some held-out data corresponding to extreme rotation speed values.

1.5.4 Transfer Learning
The transfer learning (TL) phase, once relatively rare, has become very
frequent as the market of AI services has expanded. It happens when
the user organisation, rather than training a model from scratch, sourc-
es a pretrained and pretuned AI-ML model, and uses it as starting point
for further training to achieve faster and better convergence.

TL in a Nutshell: Source a pretrained model in the same domain and apply ad-
ditional training to improve in-production accuracy.

TL in Our Running Example: ACME data scientists look for the opportunities of
sourcing a predictor for the expected time to next failure from the manufacturer
of type-A rotating machines. They get a 2D RNN model, which was trained by
the equipment manufacturer on lab data. They know that RNN are not usually
transfer learned6, but they decide to apply an RNN-specific TL technique (e.g.,
Stephen Merity’s TL) to their failure time predictor.

6. Not all ML models are equally transferable.

- 20 -

1.6 MODEL DEPLOYMENT

An ML model will bring knowledge to an organisation only when its predic-
tions become available to the users. Deployment is the process of taking a
pretrained ML model and making it available to users.

Model Deployment in a Nutshell: Generate an in-production incarnation of the
model as software, firmware or hardware. Deploy the model incarnation to edge or
cloud, connecting in-production data flows.

Model Deployment in Our Running Example: ACME management decides to compile
the failure time prediction model as firmware on the rotating machines’ controller
cards. This way they can upgrade the centrifuges by installing an enhanced control-
ler and connecting it to the local data streams.

1.6.1 Model Maintenance
Similar to software systems, ML models also require continuous main-
tenance. After deployment, AI models need to be continuously moni-
tored and maintained to handle concept changes and concept drifts.
A change of concept happens when the meaning of an input (or of an
output label) changes for the model (e.g., due to modified regulations). A
concept drift occurs when the change is not drastic but, rather, emerg-
es slowly. Drift is often due to sensor encrustment, or the slow evolution
over time in sensor resolution (i.e., the smallest detectable difference
between two values), or overall representation interval. A popular strat-
egy to handle model maintenance is window-based relearning, which
relies on recent data points to build an ML model. Another useful tech-
nique for AI model maintenance is backtesting. In most cases, the user
organisation knows what happened in the aftermath of the AI model
adoption and can compare model prediction to reality. This highlights
concept changes: if an underlying concept switches, organisations see
a decrease in performance.

Model Maintenance in a Nutshell: Monitor the ML inference results of the de-
ployed AI model to detect possible concept changes or drifts. Retrain the model
when needed.

Model Maintenance in Our Running Example: After ACME has installed its ML-
based maintenance models, it revises the label IMMINENT to IN THE NEXT FIVE
MINUTES. Also, the rotation speed sensor on the machine board encrusts every
year: sensors older than a year can no longer measure rotation speeds higher
than 1000 rpm. ACME data scientists advise immediate retraining to handle
concept change and a yearly retraining to handle sensor encrustment.

- 21 -

1.6.2 Business Understanding
Building an AI model is often expensive and always time-consuming.
It poses several business risks, including failing to have a meaningful
impact on the user organisation as well as missing in-production dead-
lines after completion. Business understanding is the stage at which
companies that deploy AI models gain insight on the impact of AI on
their business and try to maximise the probability of success.

Business Understanding in a Nutshell: Assess the value proposition of the de-
ployed AI model. Estimate (before deployment) and verify (after deployment) its
business impact.

Business Understanding in Our Running Example: ACME management meas-
ures, in a six-month verification procedure, the cost of operation for the rotating
machines that include the AI controller as well as the ones that do not. The
ACME Board estimates the related business opportunities in terms of service
and product innovation and decides to start a product line.

- 22 -

1.7 REGULATORY ISSUES OF DATA
MANAGEMENT

Data management practices and the AI-ML life cycle presented above are
tightly connected. AI-ML models require large volumes of information to
learn from, even potentially including personal data. As a result, national
and international regulatory issues need to be considered when planning the
deployment of AI-ML models performing automated decision-making on in-
dividuals based on their personal data, without any human intervention. By
personal data, we mean any data that can be linked directly or indirectly to a
user’s identity. This is a critical scenario which was intentionally not covered
in our running example, where data about the engines’ operators were not
used to train the AI-ML system. Still, personal data are present in many AI-ML
applications: for instance, an AI-ML model could analyse a user’s credit card
history to compute the user’s credit score. Using personal data in the AI-ML
model life cycle is a key regulatory issue worldwide. The European General
Directive on Privacy’s Article 22 specifies that each person has the right not
to be subject to automatic decision-making if it might result in legal action
concerning them. In this section, we briefly recall four key principles that AI-
ML models are expected to support: purpose limitation, data minimisation,
fairness, transparency and the right to information. These properties will be
connected to AI-ML systems operation in the remainder of this document.

• Purpose limitation: The purpose limitation principle states that personal
data cannot be used to train AI-ML models other than the ones the data
owners have been informed about. This is a critical property, as some
AI-ML systems rely on information that is a side product of the original
data collection. For instance, an AI-ML Fintech application can use social
media data about users (the number of their social network followers)
for computing their credit score. The principle of purpose limitation says
this secondary use should not be allowed, unless the users had been
informed of this side use when they joined the social network. Of course,
there are expectations: secondary data processing is admissible for
medical or statistical research.

• Data minimisation: The data minimization principle ensures that data
collected to train an AI-ML model is adequate and relevant to the model’s
purpose, without unnecessary redundancy. AI experts have to determine
what data and what quantity of it is necessary for the project. As we will
see, it is not always possible to predict how and what a model will learn
from data. Organizations deploying AI-ML models should continuously

- 23 -

verify they are using a minimum quantity of training data needed for their
models to operate.

• Fairness: The principle of fairness states that the use of the AI-ML
system should not result in unfair discrimination against individuals,
communities, or groups. The initial data used to train the AI-ML models
must be free from bias or characteristics which may cause the models to
behave unfairly.

• Transparency: This principle states that owners of personal data should
know which of their information is used by AI-Ml models. Organizations
deploying AI-ML should be prepared to provide a detailed description of
what they are doing with personal data to data owners.

• Right to information. This principle states that everyone has the right to
seek, receive, use, and impart information held by or on behalf of pub-
lic authorities, or to which public authorities are entitled by law to have
access. This applies to AI-ML models that are deployed by authorities to
service the community.

Organisations wishing to deploy AI-ML models are expected to find a way
to design and use them in a way that is compliant with the above principles,
because they will generate value for both service providers and data sub-
jects if done correctly.

- 24 -

Figure 9:

Data Assets and Stages of the AI-ML Life Cycle

Figure 8:

Data Assets

1.8 SUMMARY

In this chapter, we provided an overview of some AI-ML techniques, focus-
ing on the stages of the AI models’ life cycle that require or generate data
assets which need attention from the data management point of view. We
also reviewed some principles that need to be addressed when managing
data assets in the AI-ML life cycle. Figure8 shows these data assets, while
Figure9 maps the data assets to the stage of the ML life cycle where they
are used or generated.

 VALIDATION
 DATASET

 TESTING
 DATASET

RAW DATA LABELED/
TRAINING
DATASET

ARGUMENTED
DATASET

PHASES

ASSET

RAW
DATA

PRE-PROCESSED
DATA

ARGUMENTED
DATA

VALIDATION
DATA

REDUCED
DATA

LABELED
DATA

In
gestio

n

Pre
-p

ro
cess

ing

Featu
re

 Selectio
n

Model T
unin

g

Model T
ra

in
in

g

Model T
ra

in
in

g,

Deplo
ym

ent a
nd

 M
ain

te
nance

In the next chapter, we will examine each stage of the AI-ML life cycle in
detail to identify and discuss the data management issues of the corre-
sponding data assets.

- 25 -

- 26 -

2.1 SOURCES OF DATA

In recent years, businesses and organisations have been moving more
and more processes and services online. These digital processes generate
a huge amount of data every second. We can group these data into three
distinct categories:

1. Sensor-generated data (i.e., Internet of Things [IoT] data). These data
are generated by equipment without human involvement, such as
smart meters, road sensors, street cameras, satellites and many more
sources. This type of data source extends our capability of sensing and
monitoring the world around us, which, in turn, helps us in automatic
decision-making through the analysis of these data. Self-driving cars
are a good example of such systems, as they automatically analyse
data to navigate their environment and drive autonomously.

2. User-generated data. Online user-generated data include informal
content posted by individuals on social media platforms such as X,
Facebook, Instagram, YouTube, forums, blogs and other mediums of
communication, as well as more formal content in newspapers, news
agencies, government media outlets, public information websites and
so forth. It is worth noting that social media outlets such as X, Instagram
and Facebook are also being used by government and news agencies
as a formal mode of information sharing. This kind of data provides in-
valuable insights into people’s and communities’ views, perception and
behaviour, as well as what is happening in the world and the impact on
opinions, needs and actions.

3. Transaction data. Such data are generated from human actions (e.g.,
invoices, payment orders, storage records, delivery receipts, ordering a
passport online). Analysis of this type of data together with other sup-
porting types provides a more comprehensive situational awareness
and highlights the consequences of events that are taking place. For ex-
ample, the COVID-19 pandemic resulted in lower transactions in terms
of physical shopping and increased online shopping. COVID-19 has also
resulted in certain goods like masks being more in demand than fuel.

DATA INGESTION2

- 27 -

2.2 DATA COLLECTION/INGESTION

Data are key to AI applications and hence data collection is an important
stage of the AI application life cycle. There are multiple types of data that
can be obtained from multiple sources, as previously described. When data
from multiple sources are used, they can be composed as a vector, which is
a multidimensional data point.

Data can be received in real time as a data stream or imported in batches
at different time points. Receiving data as batches can be in the form of
macro-batches (large data chunks) or micro-batches (small data chunks).
Data can naturally be imported using one or multiple methods, depending
on the data systems used/available, user requirements and the AI applica-
tion being developed.

In terms of different types of data sources, data ingestion methods vary. For
online content and data, harvesters (scripts) are needed to automatically
grab the content from websites or social media platforms, either directly
from the websites or through application programming interfaces (APIs).
Such data-collection methods tend to run periodically to import data in mi-
cro- or macro-batches. There are many commercial and open-source prod-
ucts that can help obtain the relevant content from websites. In addition, a
number of platforms and websites provide more structured and consistent
methods to get the relevant data; examples include RSS feeds for news
agency websites and APIs for social media platforms. Thanks to the ad-
vances and maturity of sensors and communications technologies, almost
all IoT sensors have built-in capabilities to push sensor data in predefined
formats to storage systems for easy access and analysis, as presented in
Section 2.3. Depending on the application requirements, sensor type and
communication capabilities and costs, data can be provided as live stream
or in batches. In some rare cases, such as for legacy sensors, or for security
reasons, data must be extracted programmatically for the sensors and/
or stored locally; hence, specific steps will be needed to extract the data,
depending on the use case and type of technology.

For transactional data, the hardware and/or software systems used (e.g.,
ATMs, point-of-sales terminals, online shopping websites) have systems
to automatically log all transactions and related data, such as time, date
and type of transaction, into storage databases. Collection/ingestion of
this type of data is automated by its devices/systems, and no further effort
is needed. There are certain constraints associated with data collection/

- 28 -

Figure 10:

Masking

ID LAST FIRSRT SSN

2874 SMITH JOHN XXX-XX-5555

3281 TEMPLETON RICHARD XXX-XX-4444

ingestion and usage, drawn from rules, regulations, best practices and
potential business and technical matters. Data ownership and its intended
use and time of use are often subject to laws and regulations which can
also vary by data type. Certain data cannot be used for certain purposes or
within or outside a particular time frame. Even if data ownership is clear and
the data are not regulated by laws, there are best practices restricting their
use (see next section). An entity may have access to health data that can
be used for certain applications (e.g., diagnosis) when the data owner (the
patient) has agreed or consented. On the other hand, a company might have
data regarding the sales of a specific product or their market performance
that, though not regulated by law, they choose to use internally but not share
outside their organisation. Last but not least, in some cases automatic data
collection/ingestion can sometimes be affected by technical issues, such
as sensor failure or communications failure, that can impact the quality of
data. There are methods and techniques that can help address some or all
of these issues (usually done in the data preprocessing stage in the AI-ML
life cycle, Section 4).

Additionally, and depending on user requirements, it is possible to collect
supplementary data describing the actual data for context. Such data are
known as metadata and usually provide additional insight on the data, ena-
bling more effective analysis (Section 2.3).

2.2.1 Data privacy and anonymization
One of the major causes for resistance to data sharing is the risk asso-
ciated with violating data privacy. Data, in many cases, contains private
personal information that should not be made available to the gener-
al public, as it might cause harm to the concerned individuals. Simpler
approaches such as masking the data might be appealing due to their
low complexity. This might include substituting social security num-
bers with pseudo-random identifiers to hide the private information, as
shown in Figure10.

ID LAST FIRSRT SSN

11111 SMITH JOHN 555-12-5555

11112 TEMPLETON RICHARD 444-12-4444

PRODUCTION
DATABASE

DEV DATABASE

TESTDATABASE

ANALYTICS
DATABASE

2874

3281

XXX-XX-5555

XXX-XX-4444

EMPLOYEE TABLE MASKED VIEW

- 29 -

However, this approach does not translate well to AI-ML applications,
as it destroys many of the mathematical properties that are needed. To
facilitate joint privacy-preserving analysis, researchers, academics and
private companies have put forth a lot of effort to come up with intel-
ligent and advanced privacy-preserving data-sharing schemes. These
data-sharing schemes promise to provide the ability for two or more
entities to securely and privately share data to carry out collaborative
analytics, without revealing any private information to each other. In re-
cent years, these techniques have matured significantly and now come
with strong anonymisation guarantees, while enabling more advanced
forms of analytics. Currently, there are three main branches that ad-
dress data anonymisation which are:

• Homomorphic encryption. A class of encryption algorithms that al-
low for certain mathematical operations to be carried over encrypt-
ed data without the need for decryption

• Secure multi-party computation. A cryptographic technique that
allows two or more entities to jointly perform computations on data
without revealing the data to each other

• Differential privacy. A model to aggregate data such that no identify-
ing data on any individual is available

To successfully and correctly apply any of the above anonymisation
techniques, it is paramount to understand the features of the data set,
anonymisation scheme and analytics to be performed – and then make
the decisions based on those factors. However, the general principle is
that the stronger the anonymisation technique, the less accurate and
more time-consuming the analytics become.

- 30 -

2.3 DATA STORAGE

The field of knowledge representation in AI deals with representing the
knowledge used and produced by AI models in such a way as to solve com-
plex problems, like communicating with humans using natural spoken or
written language. In turn, data representation is the time-honoured comput-
er science field dealing with the different formats for storing and accessing
data sets, such as the ones used to feed AI models in the different stages of
the AI life cycle. The connection between these two fields is represented by
metadata, which provide additional information about the input data to be
fed to AI models. The types of data that need to be represented in AI include
facts (e.g., trustworthy database records), events (e.g., sensor data) and
meta-knowledge (e.g., metadata describing how, when and by whom other
data were collected). Managing these data types in AI data storage requires
the management of a series of intersecting data representation standards.
These include:

1. data structure standards,

2. content value standards,

3. communication standards,

4. syntax standards.

This section describes some of the available standards for data manage-
ment from an AI data-usage perspective, in an effort to provide a landscape
of data representation standards for AI storage.

- 31 -

2.4 AI DATA STORAGE

ML and deep learning rely heavily on the availability of massive data for
training purposes. For all AI applications, it is critical to have a standard
data infrastructure (AI storage) that is scalable and can apply the FAIR data
principles (findable, accessible, interoperable, and reusable) among heter-
ogeneous data sets from various domains. Data storage for AI aims to host
or collect quality data of different types and from multiple sources to create
an integrated data storage. The purpose of AI data storage is also to set
up an environment where AI model designers can easily judge, collect and
utilise data. Besides data providers and users, AI storage may also have in-
terfaces for other players, including data distributors that provide mediation
between data providers and users.

By making data representations interoperable in the data storage layer, data
scientists and other users can focus on the substance of the AI problem
they are trying to solve. This allows them to quickly unlock insights and
benefits from data analysis. Besides interoperability, a major goal of data
representation is protecting data confidentiality and personal privacy. A
technology road map for AI data governance and management is therefore
critical to any enterprise or organisation wishing to adopt AI. The roadmap
needs to express the overall direction of how to manage data generated
from the organisation’s products and services.

2.4.1 AI Data Formats
The data formats used with AI algorithms are not necessarily unique
and can be found in other applications, as well. However, some of the
formats are more commonly used than others. The following are the
most common:
• The single value representing an integer, a float or a string

• An array of single values, all of them having the same type

• The matrix, a two-dimensional array containing values of the same
type (the simplest generalisation of an array)

• A tensor which is obtained by increasing the dimensions (an n-di-
mensional array)

- 32 -

• An aggregation of several arrays of different types while assigning
a name to each one (This produces a data frame, a data structure
available in several programming languages and frameworks [e.g., R,
Spark, Python, Mathemathica, Matlab]. It is equivalent to a table in a
relational database.) Data extracted from databases, or generated
by sensors, are examples of these data structures.

ל The simplest data frame, only named columns (A generalisation
assigns a name to the rows, as well, and a more generalised ver-
sion uses a hierarchical index for rows and/or columns.)

• Simple graphs, where between two nodes there is either no arc/edge
or a single one, the edge has no direction and there are no loops

• Directed, where the edge has a direction

• Branched (multiple edges between two nodes)

If there are multiple edges, very often each edge has a label that de-
scribes the relation type. The analysis of social networks is based on
this data structure. In the field of NLP, the simplest data type is the char-
acter, represented in one of several formats (ASCII, UNICODE, using a
specific encoding, etc). Based on the level of aggregation, we can have
any of the following:
• A word which consists of a sequence of characters

• A sentence which consists of a sequence of words, separated by
spaces (the words) and punctuation marks (the sentences)

• A paragraph, a sequence of sentences, separated by full stops, ex-
clamation points or question marks

• A section/chapter/document present in a hierarchical organisation
(e.g., a book)

• A corpus, a list of documents

The main problem with this format is that it does not have a specific en-
coding (ASCII, UTF8, ISO8859-1, or Windows-1252) and it is not possible
to specify a hierarchical structure. Some alternatives are as follows:
• HTML, which can structure the text in well-defined elements

• XML, a generalisation of the HTML

• Markdown, a lightweight version of the HTML which allows the user
to specify a not too complex hierarchical structure

- 33 -

2.4.2 AI File Formats
The data, used by the algorithms, are saved on files with a structure that
depends on the data type. The simplest data format is comma-separat-
ed values (CSV), a text file in which:
• records are separated by a new line, and

• fields are separated by a comma.

The file can contain, in the first row, the column names. However, this
format is not the only standard:
• In certain formats, the fields are separated by a tab rather than a

comma.

• The row containing the column names can be removed.

• There is no standard method to represent strings with spaces or
commas (or tabs).

• There is no standard method to represent missing values.

• There are multiple methods to represent date/hour/timestamp.

• There is no consensus on whether a CSV file can contain comments
or not.

Another problem is that the column’s data type is not specified. To ob-
tain this information, it is necessary to analyse the records and to use
a heuristic approach to find them, or have them passed from the user.
A simple variant format is the attribute-relation file format, or ARFF: it
is very similar to a CSV, but it contains a header with the name and the
type of each column. Other popular text formats are XML and JSON. The
main problem with the text formats is that it is necessary to read the
file sequentially to read its context. This is a serious problem if the file
is huge and it is used in a big data infrastructure (e.g., Hadoop – refer to
Section 2.12).

Some other formats available are as follows:
• Adobe PDF

• Microsoft Word

• OpenXML (proposed by Microsoft) and OpenDocument (proposed by
OpenOffice and Sun StarOffice, now IBM): a compressed list of XML
files, containing the text, its formatting and the hierarchical organi-
sation

- 34 -

2.5 DATA REPRESENTATION STANDARDS

2.5.1 Basic ISO Working Groups and Standards
To provide a stable base to address the challenges and opportunities of
data management in AI and big data scenarios, a comprehensive range
of standards and technical reports has been published by the Interna-
tional Organization for Standardization (ISO).

• ISO/IEC JTC 1/SC 32, titled ‘Data Management and Interchange’
and currently called ‘WG2 on Metadata Standards’, focuses on three
major areas:

ל Specification of generic classes of data, metadata and frame-
works for representing the meaning and syntax of data, including
metamodels, ontologies, processes, services and behaviour, plus
the mappings between them

ל Specification of facilities to manage metadata, including regis-
tries and repositories

ל Specification of facilities to enable electronic metadata exchange
over the internet, within the cloud, and via other information tech-
nology telecommunications avenues

• ISO/IEC JTC 1/SC 42, titled ‘Artificial Intelligence’, deals with data
management in AI pipelines. It has published six relevant standards,
among which is the five-part ISO/IEC 20547 series, which provides
a big data reference architecture (BDRA) organisations can use to
effectively and consistently describe their AI-ML life cycle and its
implementation. The BDRA addresses requirements, architecture,
security and privacy, use cases and considerations that architects,
application providers and decision-makers will want to consider in
deploying a big data system. The list of published standards in-
cludes the following:

ל ISO/IEC 20546:2019, Information Technology – Big Data – Over-
view and Vocabulary

ל ISO/IEC TR 20547-1:2020, Information Technology – Big Data Ref-
erence Architecture – Part 1: Framework and Application Process

ל ISO/IEC TR 20547-2:2018, Information Technology – Big Data
Reference Architecture – Part 2: Use Cases and Derived Require-
ments

ל ISO/IEC 20547-3:2020, Information technology – Big Data Refer-
ence Architecture – Part 3: Reference Architecture

- 35 -

ל ISO/IEC TR 20547-5:2018, Information Technology – Big Data
Reference Architecture – Part 5: Standards Road Map

ל ISO/IEC TR 24028:2020, Information Technology – Artificial Intel-
ligence – Overview of Trustworthiness in Artificial Intelligence

Other ISO standards relevant to AI data representation include the fol-
lowing:

• ISO/IEC 11179:2019, Metadata Registries (MDR) – A framework for
registering and managing metadata about data sets

• 11179-2:2019, Part 2: Classifications – Describes the registration of
classification schemes and using them to classify registered items
in a metadata repository. Any metadata item can be made a classifi-
able item so it can be classified, including object classes, properties,
representations, conceptual domains, value domains, data element
concepts and data elements themselves.

• 11179-3:2013, Part 3: Registry Meta Model and Basic Attributes
– Specifies the structure of a metadata registry in the form of a
conceptual data model, which includes basic attributes that are
required to describe metadata items

• 11179-3:2019, Part 3: Registry Meta Model – Core Model – Specifies
the structure of a metadata registry in the form of a conceptual data
model

• 11179:7:2019, Part 7: Meta Model for Dataset Registration – Provides
a specification in which metadata describing data sets, collections
of data available for access or download in one or more formats, can
be registered

• ISO/IECTR19583, Concepts and Usage of Metadata

• 19583-1, Part 1: Metadata Concepts – Provides the means for under-
standing the concept of metadata, explains the kind and quality of
metadata necessary to describe data and specifies the manage-
ment of that metadata in an MDR

• 19583-2, Part 2: Metadata Usage – Describes a framework for the
provision of guidance on the implementation and use of the regis-
tries specified in ISO/IEC 11179, Information Technology – Metadata
Registries, and ISO/IEC 19763, Information Technology – Meta Model
Framework for Interoperability (MFI)

• ISO/IEC11404:2007, General Purpose Data Types (GPD) – Specifies
a collection of data types commonly occurring in programming

- 36 -

languages and software interfaces including both primitive and
non-primitive data types, in the sense of being wholly or partly de-
fined in terms of other data types

2.5.2 ISO Work Groups and Activities on Data Governance
ISO/IEC JTC 1/SC 40, titled ‘IT Service Management and IT Governance’,
currently WG1 on Governance Standards, leads the development of
standards, tools, frameworks, best practices and related documents on
the governance of information technology. Relevant standards poten-
tially beneficial to AI include the following:

• ISO/IEC 38505-1:2017, Part 1: Application of ISO/IEC 38500 to the
Governance of Data – Applies to governance of the current and fu-
ture use of data that is created, collected, stored or controlled by IT
systems, affects the management processes and decisions relating
to data

• ISO/IEC 38505-2, Part 2: Implications of ISO/IEC 38505-1 for Data
Management – Identifies the information that a governing body
requires to evaluate and direct the strategies and policies relating to
a data-driven business and the capabilities and potential of meas-
urement systems that can be used to monitor data performance
and uses.

- 37 -

2.6 REPRESENTATION STANDARDS FOR
WEB DATA

Web data are at the core of many AI applications revolving around users’
behaviour in cyberspace. Next, we touch upon some of the most well-known
representations of the data and metadata designed specifically for web data.

2.6.1 The Dublin Core
This standard emerged to produce a general metadata standard for de-
scribing web pages. Originally created in 1995, Dublin Core (DC) included
thirteen elements (attributes) that were later extended to fifteen in 1998
and again, as Qualified DC, to eighteen, including audience, provenance,
and rights holder. DC was initially based on text and HTML but evolved to
include the concept of namespaces for elements (with approved terms
for the semantics of element values) coincident with the move to Quali-
fied DC and towards using XML. Later the community realised that rela-
tionships among elements were important, and an RDF version was pro-
posed. However, the major volume of DC metadata is still in HTML format
and so the benefits of using namespaces – and later relationships – have
not been realised. Indeed, this is the major criticism of DC: it lacks refer-
ential integrity and functional integrity. The former problem means that it
is hard to disambiguate element values in repeating groups.

2.6.2 Data Catalog Vocabulary (DCAT)
The original DCAT was developed at the Digital Enterprise Research In-
stitute, refined by the eGov Interest Group and then finally standardised
in 2014 by the Government Linked Data Working Group, leading to a W3C
recommendation. It is based on Dublin Core but adopts linked data prin-
ciples with a schema including links between a data set and a distribution
of that data set (i.e., a replicate or version), a data set and a catalogue and
also between a data set and an agent (person or organisation).

2.6.3 Common European Research Information Format (CERIF)
CERIF is a European Union Recommendation to Member States. CER-
IF91 (1987–1990) was quite like the later Dublin Core (late 1990s). CER-
IF2000 (1997–1999) used full enhanced entity-relationship (EER) mod-
elling with base entities related by linking entities with role and temporal
interval (i.e., decorated first-order logic). In this way, it preserves refer-
ential and functional integrity. There are commercial CERIF systems,
two of which were bought by Elsevier and Thomson-Reuters to include
CERIF in their products.

- 38 -

2.7 DATA REPRESENTATION IN KEY
VERTICAL DOMAINS

Several vertical domains of interest for AI do not yet have common data
representations but have nevertheless started initiatives in data format
sharing.

2.7.1 ISO Activities on Space Data
The Consultative Committee for Space Data Systems (CCSDS) was
formed in 1982 with the goal of gathering best practices by the major
space agencies of the world and developing a common solution to the
operation of space data systems. While the CCSDS is concerned pri-
marily with space data, the work of ISO TC20/SC13 is applicable well
beyond the space data community. The National Archives and Records
Administration and other digital cultural organisations also participate
in the group. Much of the work is focused on long-term (long enough to
be concerned about obsolescence and usability) preservation and use
of information, and interoperability between data repositories, data pro-
ducers and their users. Relevant standards include the following:

• ISO 16363, Audit and Certification of Trustworthy Digital Reposito-
ries (TDR). The OAIS Reference Model is adopted by many ‘OAIS-
compliant’ digital repositories. At the time ISO 14721 was first
developed, there was no standard to assess compliance with the
reference model. ISO 16363 was developed to fill that gap. In addi-
tion to providing for the audit and certification of TDRs, the standard
can serve as a road map for developing the policies, procedures,
staffing and infrastructure for setting up a TDR that is compliant
with the OAIS Reference Model.

- 39 -

2.8 DATA REPRESENTATION FOR
BIOINFORMATICS

Applied Proteogenomics Learning and Outcomes (APOLLO) aims to corre-
late all genomic, proteomic and clinical data with imaging data with a focus
on precision medicine or targeted medicine. Three major developments
were launched. First, in the Precision Oncology Program (POP, March 2015),
the US Department of Veterans Affairs (VA) program focused initially on
lung cancer. It was designed to seamlessly merge traditional clinical activ-
ities with a systematic approach to exploiting potential breakthroughs in
genomic medicine and generating credible evidence in real world settings
and in real time. The second program, Apollo (July 2016), was inspired by
Moonshot, where a coalition was formed between the US-VA, the US De-
partment of Defense and the US National Cancer Institute to help cancer
patients by enabling their oncologist to more rapidly and accurately identify
drug treatments based on the patient’s unique proteomic profile. The third
program was Research POP (RePOP, July 2016), the research arm of POP,
consisting of veterans who agreed to share their medical records (clini-
cal, imaging, genomic, etc.) within and outside the VA for the purpose of
finding the cure for cancer. The Veterans Health Administration consists of
8,000,000 veterans, 160 VAMC, 800 clinics, 135 nursing homes. It also has
the backbone operational infrastructure of the Veterans Information Sys-
tems and Technology Architecture (VistA).

- 40 -

2.9 DATA REPRESENTATION FOR SMART
CITIES

Smart cities provide a rich environment with heterogeneous data from
many diverse IoT sensors. The complexity of such data collection includes
different real-time communication protocols, data formats, data stores and
data processing methods, either at the edge or at the central office. The
combined data enables decision-making from everyone, from the city resi-
dents to the city government.

- 41 -

2.10 DATA REPRESENTATION FOR
INTELLIGENT MANUFACTURING

Smart manufacturing plays a central role in data integration, from diverse
supply chains of raw materials on product specifications to quality moni-
toring throughout the production life cycle. Additional data and metadata
are generated from many different supporting sensors and machinery for
real-time analysis and decision-making to provide safe and healthy environ-
ments, bring precise and quality processes and deliver reliable and superior
products.

- 42 -

2.11 RECOMMENDATIONS

Supporting diversified representations for AI data assets is essential for
organisations to reduce the corporate burden of AI. Key recommendations
include the following:

• Utilise standard metadata as much as possible to capture precise de-
scription, data types, properties, unit of measurement, characteristics,
etc., for given data elements.

• Adopt/develop standard metadata registries to support catalogues and
types registries.

• Adopt/develop standard interfaces to support online data element defi-
nition.

• Adopt/develop standard computable object workflow functionality to
trigger non-functional properties, including privacy and ethical issues in
AI-ML data assets.

- 43 -

2.12 BIG DATA SYSTEMS

Data storage requirements for AI vary widely according to the application.
Medical data, as well as imaging data sets used in military applications, fre-
quently combine petabyte-scale storage size with individual files in the gi-
gabyte range. Numerical data used in industrial areas such as maintenance,
like the running example in the previous chapter, are often much smaller.

One of the key requirements of big data storage systems is to handle very
large amounts of data and maintain the rates of high input/output opera-
tions per second (IOPS) needed to feed some AI-ML models. Indeed, these
requirements are incompatible with traditional file system organisation
based on files and folders.

When performance is not the top priority and one can accept response times
on the order of seconds, scale-out (or clustered) network-attached storage
(NAS) can be used. NAS consists of file access shared storage that uses par-
allel file systems distributed across many storage nodes to handle billions of
files without the kind of performance degradation that occurs with ordinary
file systems as the folder tree grows. Another storage technology that can
handle very large numbers of files is object storage. This tackles the same
challenge as NAS – traditional tree-like file systems become unwieldy when
they contain too many files. Object-based storage copes with this issue by
giving each file a unique identifier and indexing the data and their location.
Object storage systems can scale to very high capacity and large numbers
of files estimated to be in the billions. Flash storage is commonplace now,
while NVMe flash is emerging as the medium of choice for applications that
require the fastest access for data stored near the graphics processing unit
(GPU). The spinning disk is still there, too, but is increasingly being relegated
to bulk storage on lower tiers.

- 44 -

2.12.1 Big Data Platform Structure
Big data platforms are software systems designed to process huge
amounts of data in a short time. We can classify these platforms ac-
cording to their data ingestion modalities (Section 1.3.3):

1 Platforms for stream data

2 Platforms for batch (stored) data

An example of the first category of platforms is the software platform
used by X to monitor in real time the messages sent and received; the
second category includes the EOSDA cloud-based platform to analyse
satellite imagery for business and science purposes. Big data platforms
rely on the following principles:

1 Distribution: A single high-performance computer is not sufficient to
handle the AI-ML workload. Thus, big data platforms use clusters of
low-cost machines connected together.

2 Data chunking: Data are split into smaller chunks that can be pro-
cessed independently.

3 Parallelism: Each task of the life cycle is subdivided into smaller tasks
that can be executed in parallel

However, the existence of a high number of nodes introduces another
problem: an increased probability that some nodes can crash or the
storage system can fail. To overcome these problems, big data plat-
forms use three main strategies:

1 Functional paradigm. The implementation of the tasks follows the
functional programming paradigm. The main property of this par-
adigm is that it has no side effects: different nodes, executing the
same task on the same data, in different instants, generate the same
result, regardless of which tasks have been previously executed.

2 Replication. The data are replicated several times: in this way, if a
storage system’s component fails, there exists another copy availa-
ble somewhere else.

3 Graceful failure. If a task fails, the same task can be submitted to
another node, or, in the real-time systems, the same task can be ex-
ecuted two or more times, and the result can be obtained from the
working node.

- 45 -

2.12.2 Hardware Issues
Besides the software architecture, AI-ML models’ need for speed has
encouraged the use of a high number of GPU-intensive clusters. GPUs
were originally used to accelerate memory-intensive geometric calcu-
lations such as the rotation and translation of polygons’ vertices into
different coordinate systems.

Since most of these computations involve matrix and vector operations,
GPUs have become increasingly used for non-graphical calculations;
they are especially suited to parallel problems. AI-ML models’ require-
ments boosted the interest of GPUs. While training AI-ML models, GPUs
can be hundreds of times faster than Central Processing Units (CPU)s.
Today, there is some competition between GPU and custom integrated
circuits (ASICs), including the tensor processing unit (TPU) designed by
Google.

2.12.3 File Formats
Some file formats for big data are more efficient than regular formats
for AI-ML applications, as they permit to read only specific parts of the
file. The most famous one, now a standard, is Hierarchical Data Format,
versions 4 and 5). It is able to save in an efficient way (in binary and com-
pressed format) a data frame with hierarchical indices where the values
can be matrices or tensor data used by AI-ML models.

Other specialised data formats include the following:
• Apache Parquet. A columnar data structure, defined by Cloudera

and X

• Apache ORC (Optimized Row Columnar). Defined by Hortonworks
and Facebook

- 46 -

3.1 STATISTICAL ANALYTICS

In this section, we outline the main statistical procedures carried out in the
data exploration stage.

3.1.1 Variables and Covariates
In statistical terminology, the dimensions of each data vector that will
be used by prediction or classification are called variables, while the
other dimensions are called covariates. When ingesting data about a
phenomenon, such as the rotation speed of the rotatory engines men-
tioned in Section 1, covariates can be constant (that is, fixed at ingestion
time, e.g., the engine’s model) or change over time (for example, the en-
gine’s physical location). The covariate studies carried out in the data
exploration stage try to determine which covariates are helpful for the
prediction of classification of the variable values. Such studies aim to
achieve results analogous to the feature reduction stage of the AI life
cycle.

3.1.2 Size Determination
In the data ingestion stage, it is often implicitly assumed that the data
points in a data set are samples representative of a wider population. An
important requirement to be checked at exploration time is to have data
from an adequate number of instances. Whatever the AI technique that
will be used, any estimate based on a small number of instances will
be less reliable than one based on a larger number, and when statistic
models are fitted to small data sets, the estimated impact of the covar-
iates is too imprecise to give reliable answers. A rule of thumb is that
even when simple regression models are used, at least ten data points
need to be included in the data set for each dimension considered; oth-

DATA EXPLORATION3
It is important to rely on a data source only after having carefully examined
the data it provides. The huge size of data sets used for AI applications makes
it difficult for humans to inspect raw data vectors directly: there are just too
many of them. Statistical and visual analysis tools play an important role in
the data exploration phase of the AI life cycle.

- 47 -

erwise, regression coefficients may become biased. Several books and
software packages are available to assist the calculation of adequate
sample sizes, and many general-purpose statistical packages also per-
form such calculations.

3.1.3 Distribution Fitting
A major part of exploratory statistical analysis is probability distribu-
tion fitting, (i.e., checking that a given statistical distribution or model
is an appropriate representation of the ingested data). Fitting involves
computing the corresponding distribution parameters (e.g., the distri-
bution mean and variance based on the data set parameters average
and deviation). Knowing which probability distribution is a close fit to
the ingested data set can be very helpful in the next phases of the AI-ML
life cycle, such as model selection. Figure11 depicts two common dis-
tribution functions, the Normal (or Gaussian) distribution and the Uni-
form distribution. Generally speaking, however, distribution fitting is not
straightforward, and requires some background in statistics. Here, we
only aim to present an overview of some of the major issues involved.

The first step usually consists of guessing the appropriate statistical
distributions to try on the data. Building the cumulative distribution
function (CDF) of the data values requires listing the frequency of each
data value in the data set. From this histogram one can derive the prob-
ability distribution function (PDF) of the data. Educated guesses about
the data distribution made at the data exploration stage usually take
into account the presence or absence of symmetry in the data set. For
example, data values whose frequencies lie symmetrically around a val-
ue may fit the different shapes of the symmetrical normal (or Gaussi-
an) distribution, depending on mean µ and variance σ. Other symmetric
distributions are the logistic distribution, the Cauchy distribution or the
Student’s t-distribution. The latter is an example of a symmetric heavy-

Figure 11:

Distribution Fitting

Normal Distribution Uniform Distribution

-0.1 0.1-0.05 0.050-0.1 0.10.050-0.05

- 48 -

tailed distribution, meaning that the values farther away from the mean
occur relatively more often.

When large data values tend to be farther away from the mean than
smaller ones, one has a distribution skewed to the right. Skewed dis-
tributions include the log-normal one, where log values of the data are
normally distributed, the exponential distribution, the Pareto distribu-
tion and many others. When small data values tend to be farther away
from the mean than the larger ones, the distribution is left-skewed, like
the square-normal distribution (i.e., a normal distribution applied to the
square of the data values). Of course, the true probability distribution of
data may be different from the fitted distribution, as the ingested data
may not be totally representative of the underlying phenomenon due to
measurement error. Also, there is non-stationary behaviour: the occur-
rence of data in the future may deviate from the fitted distribution. In
other words, a change of environmental conditions may cause a change
in their probability of occurrence.

To quantify how well a distribution fits the data, it is customary to use
parametric tests, where the parameters of the distribution are com-
puted from available data. Such tests are available in many statistical
packages and libraries. It is also customary to transform right-skewed
asymmetric data to fit symmetrical distributions (like the normal and
logistic ones) by applying the logarithm or the square root to the data,
or to fit a left-skewed distribution by computing the square values. Rais-
ing data to a power p, one can try to fit symmetrical distributions to
data obeying a distribution of any degree of skewness. This technique
enhances the flexibility of probability distributions and increases their
applicability in distribution fitting. Another popular technique is distri-
bution shifting (i.e., replacing each raw data value V by V ‘= Vm , where Vw
is the minimum value of V). This replacement represents a shift of the
probability distribution to the right, as Vm is negative. After completing
the distribution fitting of V ‘, the corresponding values are computed as
V = V ‘ + Vm, which represents a back-shift of the distribution to the left.
Distribution shifting augments the chances of finding a properly fitting
probability distribution.

It is also possible to fit two different probability distributions, one for the
lower data range, and one for the higher. The ranges are separated by a
break-point. The use of such composite probability distributions may be
advisable when the data are collected under different conditions.

- 49 -

3.2 VISUAL ANALYTICS

Visual analytics is an outgrowth of the fields of information visualisation
and scientific visualisation that focuses on analytical reasoning facilitated
by interactive visual interfaces. It can attack certain problems whose size,
complexity and need for closely coupled human and machine analysis may
make them otherwise intractable. It integrates machine analysis process,
human cognition and perception and information visualisation to lead the
researcher in the process of analysis. The main aim of visual analytics is to
amplify the analyst perception by providing a visual representation of the
data that results from the analysis process. The analyst can interact with
both the information visualisation, by zooming and filtering, and the analysis
process by choosing the analytics methods or changing attributes. In this
context, the cognitive ability of the analyst is the key to building hypotheses
and making decisions.

Visual analytics seeks to blend techniques from information visualisation
with techniques from computational transformation and analysis of data.
Information visualisation forms part of the direct interface between user
and machine, amplifying human cognitive capabilities in a few basic ways:

• by increasing cognitive resources, such as by using a visual resource to
expand human working memory;

• by reducing the search space, such as by representing a large amount of
data in a small space;

• by enhancing the recognition of patterns;

• by supporting the easy perceptual inference of relationships that are oth-
erwise more difficult to infer;

• by perceptual monitoring of a large number of potential events; and

• by providing a manipulable medium that, unlike static diagrams, enables
the exploration of a space of parameter values.

These capabilities of information visualisation, combined with computa-
tional data analysis, can be applied to analytic reasoning to support the
sense-making process.

- 50 -

3.2.1 Visual Analytics Process
During the visual analytics process, the user alternates data visualis-
ation and analysis of results by trying to gain insight and knowledge that
up to that point has been hidden. Figure12 illustrates the visual analytics
process: ovals represent stages, and arrows represent transitions. The
process is iterated in subsequent steps until the analyst is satisfied with
the extracted knowledge:

• Some data sets may require transformations such as integration,
cleaning or normalisation before analysis may begin.

• The analyst is typically given two options:

ל First, to visualise the data and come up with a hypothesis or
remodel data.

ל Second, to analyse the data and build models using data mining
methods, then visualise it.

• The analyst is part of the loop in both cases. For visualisation, they
can zoom in/out in the diagram to build hypotheses. Besides, in
the analysis processes, they can choose the method of analysis or
change parameters to test them.

Figure 12:

Visual Analytics Process

Visualisation

Models

Data KnowledgeModel
Visualisation

Model
Building

MappingTransformation

User Interaction

Parameter
Refinement

Feedback Loop

Automated Data Analysis

Visual Data Exploration

Data Mining

- 51 -

3.2.2 Some Examples
Common features of visual analytics tools include the capability of data
visualisation across a number of dimensions, a rich and user-friend-
ly dashboard, the capability of integrating different data sources and
sometimes the support for multi-user collaboration in the analysis. An
example of a well-known analytics tool with multidimensional visualis-
ation is Gapminder Trendalyzer. It can be described as a bubble chart
using animation to illustrate trends over time in three dimensions: one
for the X-axis, one for the Y-axis, and one for the bubble size, animated
over changes in a fourth dimension (time). Colour and other graphical
markings can add extra dimensions. For instance, one can represent
the average income of people within a country on the X-axis, life expec-
tancy on the Y-axis and the population as the size of a bubble, and use
bubble colours to denote the continent where they are located. Using
these conventions, one can observe the time evolution of the first three
quantities over time and, for instance, make hypotheses about how the
correlation between the first and the second has developed. Selecting
one continent rather than another allows us to formulate hypotheses
about the different dynamics present in distinct regions of the world.
The tool is also effective for storytelling. Rich dashboards are featured
by commercial products. They offer a wide selection of gauges, data
views, maps, charts, widgets, tables and other data-aware objects for
story boarding and data representation.

- 52 -

4.1 QUALITY AND CLEANNESS OF DATA

In general terms, data quality or cleanness refers to the level of data com-
pleteness, consistency, accuracy or precision defined by the data require-
ments and variable descriptions or implied from the distribution of values.
This sort of independent interpretation of the data quality is often extended
in a case of known data utility or application to simply inform, to which ex-
tent the data in its current state can be readily used to solve the specific
problem. In all the cases, the general rule is that the better the quality of the
data, the less preprocessing/cleaning effort is required and the sooner they
can be utilised to generate better data application outcomes.

Several standard data quality characteristics allow for rapid evaluation of
the level of preprocessing effort needed to clean the data and often inform
the choice of the appropriate data modelling technique for the data at hand.
These data quality characteristics are as follows:

1. Data completeness describes the degree to which each field contains
a complete or non-missing set of values as defined by the data size. It is
usually measured in percentage terms for each data variable/field. It is
worth noting that missing data may or may not be specifically marked in
the data. Although white space or the markers NULL, NAN, NIL are often
used to mark the missing data entry, in general one should receive the

DATA PRE-PROCESSING4
The term data preparation is used to designate the first step of the pre-
processing phase, where raw data are improved to make them fit for AI-ML
applications. It typically consists in determining the data quality to execute
appropriate data cleansing procedures. Depending on the application,
data cleansing may be limited to the elimination of individual or systematic
errors or inconsistencies with the data types or proceed further to enable
or improve the efficiency of the data application process. The latter may
also involve filling in missing data, encoding the data to the less occupant
data types or to meet the numerical format requirements or even, in case
of supervised ML applications, to label or tag the data samples into applica-

tion-defined data patterns or classes.

- 53 -

missing data marker from the data provider or otherwise infer it from
the data.

2. Data consistency refers to the level of agreement in format and type
that is observed within the data set or its variables/fields. For example,
if in a date column full of dates in dd/mm/yyyy format, we suddenly
observe the number 45 or the colour red, this is clearly a value that is
inconsistent with the date type. In fact, even the value 13-MAR-2020
would be inconsistent because it uses a different date format. For ir-
reconcilable data inconsistency (as in the first case above), the marker
must be replaced with the missing value marker; in the case of a minor
format inconsistency (as in the second case above), it must be correct-
ed to the correct form.

3. Data accuracy refers to the degree of correctness with which data val-
ues reflect the measured characteristics. The assumption here is that
any inaccurate data are correct in terms of the type and format required
by the variable they describe, but their values are simply wrong. Data in-
accuracies can be a result of flaws in the measurement theory, mistakes
in the data acquisition process or various other possibly compounded
errors unaccounted for in data generation, which only surface during a
quality check in the form of spikes, outliers, distribution perturbations
and other statistical inconsistencies.

4. Data precision refers to the required level of detail to sufficiently de-
scribe a specific variable with an instance of a measurement. If, for in-
stance, a floating-point temperature measurement with three decimal
digits’ precision is suddenly met with integer values, or if a millisecond’s
precision timestamps are mixed with daily dates, we consider such var-
iable instances imprecise or of variable precision. Low-precision data
are considered to be a less severe data quality issue, as they do not
lead to data removal but simply to the attribution of certain non-zero
uncertainty bounds around the precise measurements.

- 54 -

4.2 DATA CLEANSING

Data cleansing covers all the preprocessing activities that are required to
be carried out on the data to eliminate or resolve data quality issues. As
mentioned before, these activities can be divided into a standard set of
activities that are application independent, which improve the state of the
data whatever the application, and activities that are dependent on/guided
by the data application to efficiently and effectively improve data utility
for this application. The boundary between the two cleansing techniques,
application dependent and independent, is often blurred. The reason for the
reduced distinction is that there are a growing number of possible appli-
cations of data; therefore it is increasingly easier to find at least one way
to subjectively enhance the improvement by performing the ‘standard data
cleansing‘ differently. For the same reason, it is always advisable to keep a
copy of uncleansed raw data as a reference backup point that the data can
be reverted back to if needed.

The data quality issues that can safely be cleaned whatever application is
used consist of removing data inconsistencies, both by marking the incon-
sistencies as missing values and correcting the inconsistent formats to the
correct form. The data imprecisions are often simply left in the same state
or are artificially transformed to the dominant precision if possible.

The cleansing of all other data quality issues is mostly dependent on the
data application. There are two data cleansing practices that are most often
carried out in preparation for AI applications:

1. Filling in missing data is typically required by supervised and unsuper-
vised ML but also by many statistical analysis methods that are saturat-
ed with mathematical methods and numerical processing techniques.
Not filling in the missing values would result in infinities, singularities or
other errors. There are a number of standard methods for filling in miss-
ing data, and their effectiveness depends on the context and type of
data application. They may also be considered in terms of the risk level
associated with the introduction of new values of uncertain validity.

 It is important to remark that filling in a missing data point is not a
necessity in all circumstances, especially in the first stages of the life
cycle. In fact, the most risk-averse or agnostic approach to missing data
handling is to simply clean and replace it with the single representa-
tion that some methods may be able to use. For example, a number of

- 55 -

mathematical models can handle infinities, as well as so-called not-a-
number (NaN) entries. Moreover, in case of categorical variables, miss-
ing values can simply be pulled together and labelled as a new missing
value: NULL. In both cases, filling in missing values really becomes an
exercise in replacing all their different forms with the single representa-
tion accepted by the application and consistent with the specification
that can handle them (i.e., NaN or NULL). Following this approach elim-
inates the risk of introducing new uncertainties along with the missing
data.

 One of the most conservative methods of filling in missing values is
inserting the variable’s mean, mode or median value, whichever is most
appropriate. In the case of temporal or sequential data, the least risky
method for filling in the missing values is the copydown method, which
simply populates the missing values with the last known non-missing
value in a sequence. In case the sequence starts with some missing
values, the next least risky strategy is to fill in this initial missing section
with the first following non-missing value found in a sequence.

 The riskier methods for filling in missing data in the context of multi-
dimensional data are based on the concept of data similarity (i.e., the
nearest neighbour). Assuming that the data instance is not missing
in all dimensions, this method will search for the most similar cases
among these other non-missing dimensions. Then, when the target
variable value is found, it is simply filled in based on the values from
the single most similar neighbour or the average over the k-most sim-
ilar neighbours. In the sequential data, such a method can be directly
replicated with some degree of influence by available temporal con-
straints such as data interpolation, which ensure the continuous flow of
a sequential signal. However, interpolation can be very damaging if the
data application uses time series forecasting because it would result in
illegally passing future information back to the past. There are, in fact,
spectacular failures reported in financial algorithmic trading based on
interpolated financial time series. Hence, as mentioned above, the most
suitable choice here very much depends on the data application.

 In addition to the most and least risky strategies for filling in missing
data, there are others that try to exploit and preserve other data charac-
teristics, typically higher order statistics such as data distribution and
data domain bounds, and apply semi-random data sampling from the
distributions obtained from the non-missing part of the data examples.

- 56 -

These methods address the missing data problem while preserving
marginal data distributions, but they also risk injecting accuracy errors
by ignoring conditional dependencies with other variables.

2. Outlier removal is considered a removal of the data values that are sig-
nificantly different from other observations. Even identification of out-
liers is typically arbitrary, because unless we possess prior knowledge
about the data generation and its constraints (which is rarely the case),
it is impossible to determine if the anomalous value genuinely reflects
a valid measurement or is the result of some kind of error. Statistical
hypothesis tests may be used here to identify the outliers and generate
a likelihood value on how probable it is that the value could have been
generated from the measured probability distribution, but a more prag-
matic approach relies on the data application to decide where to set
the threshold for outlier removal so that the performance of the data
application is maximised.

 In practical terms, outlier removal follows a phase of outlier identifica-
tion, followed by replacing them with missing data markers and option-
ally further refilling them using the most suitable method for filling in
missing data for the data application at hand.

- 57 -

4.3 DATA NORMALIZATION

The term normalisation informally designates all transformations per-
formed on ingested data at the data exploration stage or (more frequently)
at the data preprocessing stage of the AI life cycle. It is also possible that
the outputs of certain AI-ML models are renormalised before feeding them
to other models in scenarios where multiple ML models are connected in a
sequence. The overall goal of data normalisation is to bring the values of the
components of data vectors to a common scale, without distorting the dif-
ferences in the value ranges. Normalisation prevents the scales of dimen-
sions in the input data vectors from affecting the dimension’s importance
for the AI model that will be used. For example, consider a bi-dimensional
data set containing only two features, v = (V1, V2), and assume that V1 values
range 0˘10, while V2 ranges 0˘100000. In some data analysis techniques,
like linear regression, V2 will end up influencing the regression model’s result
more than V1 due to its larger size, although it may be less useful than V1 for
computing an accurate output.

Normalising data also allows designers to neglect the measurement units,
enabling AI models to consider all dimensions of a data vector as pure num-
bers on the same scale.

It is important to remark that not all data sets require normalisation before
applying ML models. It is mandatory only when the features have different
ranges. Popular ways to normalise data include the following:

• Normalising data distribution’s moments. Transforming normally dis-
tributed data to obtain a distribution whose mean µ = 0 and standard
deviation σ = 1

• Standardising data values. Transforming data using a z-score. This
transformation is usually called standardisation in statistics textbooks.
To perform this transformation, one starts from the mean µ and also the
standard deviation σ of the data probability distribution. In the AI life cy-
cle, these parameters are estimated in the fitting procedure of the explo-
ration phase. The z-score substitutes each data value with its distance
from the mean of the population distribution. This distance is expressed
as the number of standard deviations that separate the data point from
the population mean. By definition, z-scores are symmetric and follow
a normal distribution. They usually span the six sigma interval: from 3
standard deviations (at the far left of the normal distribution curve) to

- 58 -

+3 standard deviations (at the far right of the normal distribution curve).
Z-scores are also a way to compare normally distributed data values
belonging to huge data sets. Estimating how far a given value V lies from
the mean may be difficult when V belongs to a data set with millions of
entries; the Z-score of V expressed directly where V lies with respect to
the population’s mean.

• Rescaling data values. Transforming data so that they all have values
between 0 and 1. This transformation is also called feature scaling. While
feature scaling can in principle be computed by dividing all data values
by the largest one (

V

Vmax
), this may bring rounding errors when Vmax

is much larger than the other data values. The most popular rescaling
formula used by statistics tools and libraries is

• Normalizing data vectors: Divide each data vector v by its norm, so all
data vectors have a length of one.

 V − Vmin
Vmax – Vmin

 V ’= (1)

- 59 -

4.4 DATA ENCODING

In the context of AI-ML models, the term data encoding refers to reversible
transformations upon the data vectors’ components or features that map their
original values to a new set of discrete values in order to achieve certain ben-
efits for the data application, such as improved model performance. Data en-
coding offers a way to convert categorical variables to numerical representa-
tions such that the AI-ML models exclusively working on numerical data could
include additional variables and often deliver improved performance.

The common strategy that underpins all data encoding methods used in
the context of AI-ML is mapping inputs into a discrete (typically ordinal) rep-
resentation. The most common starting point in data encoding discussions
is categorical data encoding. We will also cover numerical and text data
encoding while mentioning image and sound data encoding techniques.

4.4.1 Categorical (Nominal) Data Encoding
Nominal data encoding is aimed at mapping each unique category of
the categorical variable into a discrete numerical format that can be
easily absorbed by the numerical algorithms of ML models.

1 Ordinal. This encoding simply maps each category of the nominal
variable to a discrete number starting from 1. Since the categories
are orderless by nature, the order of the encoded categories could be
random, but it is a good practise to follow lexicographic order when
categories are expressed using alphanumeric symbols. In case of
categories typically represented by text, ordinal encoding delivers
enormous savings in memory storage requirements because hun-
dreds of bytes required to store one text string entry are replaced by 1
or a handful of bytes to represent the ordinal number.

2 One-hot. Even though categorical values do not have any intrinsic
order, ordinal encoding introduces it because of ordinal enumera-
tion, which can mislead certain ML methods which would utilise the
numerical distance. The technique of one-hot encoding eliminates
this problem by marking the occurrence of each unique categorical
value in a separate binary indicator variable. Given m categories of
the original categorical variable, one-hot encoding converts them to
m binary variables, each exclusively marking the occurrence of the
corresponding category. One-hot encoding is suitable to numerical-
ly represent categorical variables taking a small number of unique

- 60 -

values. Otherwise, the benefits of mapping to orderless numerical
representation are outweighed by the growing dimensionality and
increased computational cost of processing such data.

- 61 -

4.5 DATA ANONYMISATION

Anonymisation of the data can be done as part of preprocessing the data
or as part of data ingestion. The position of this step in the AI life cycle can
be related to the data governance policies at the organisation adopting the
AI-ML model. The best approach is often to anonymise in the data ingestion
phase, to avoid any data leakage or violation of privacy during the AI-ML life
cycle. In the case where data preprocessing is the responsibility of the data
owner, it is not unusual for anonymisation to be part of preprocessing. Or-
ganisations should be careful in setting up their strategy for anonymisation
and in positioning it correctly in the life cycle of their AI application, as will
be discussed in the remaining sections.

- 62 -

4.6 DATA LABELLING

The classification process associates a label to input data vector. For in-
stance, in health care, an image representing an MRI scan could be associ-
ated to a label corresponding to the description of its content: a picture of a
skin lesion could be labelled with the diagnosis while labels of chest X-rays
could indicate pneumonia. In a sentiment analysis setting, an X post could
be associated to a label describing the mood or sentiment of the author
with respect to the X post’s subject. Similarly, regression requires a numeri-
cal value to be associated to each input: the row of values describing details
about a real estate property should have a price associated to it.

Labels come in many forms. Prelabelled data sets (open or proprietary) are
sometimes available. In other cases, only unlabelled data sets are available,
and labelling must be carried out during the AI-ML model development.

When some or all of the labels are missing, one has to devise strategies to
fill in the gaps. The main strategies are the following:

• Manual labelling by one or more experts

• Labelling by an ‘oracle’ algorithm

• Use of unsupervised techniques for partitioning followed by labelling
block representatives

Other strategies available, when the data are partially labelled, involve
adopting special learning algorithms in the learning phase: semi-supervised
algorithms such as self-training and co-training algorithms.

Manual labelling. In manual labelling, human experts take individual exam-
ples and attach to them a label taken from a predefined set. This process
is typically time consuming, rather expensive and cannot scale to a large
number of examples. Manual labelling can either be done in-house, get
crowd-sourced or be outsourced to individuals or companies.

Oracle algorithms. The use of an oracle consists of running an available
classification algorithm and tagging the data with the labels it issues. Then,
the labelled data can be used for training another ML model. The use of or-
acle algorithms is relatively rare and justified only in special circumstances
because if a well-performing classification model is available, then it is hard
to justify spending time and resources on preparing the data and training
a new one. One such example is if the available classification algorithm

- 63 -

is a black box, while one would like to acquire some understanding of the
classification logic; sometimes the available model is known in detail but
the architecture is not satisfactory for some reason; for example, the oracle
algorithm is available for a limited time or under constraints that cannot be
fulfilled in the long run.

Unsupervised partitioning. In certain scenarios, the data can contain regu-
larities that allow for partitioning them into categories based on similarity,
yet each partition would be of unknown meaning. The meaning of each par-
tition can be found by human experts at a later stage, which would cut down
the labelling effort to simply labelling the partitions rather than the entire
data set. This fact can be exploited as follows: the partitioning algorithm
is executed on the data (e.g., a clustering algorithm); the output is disjoint
sets/blocks of data, each of which can be interpreted as an unknown cat-
egory; a few examples from each set are labelled manually and the label is
extended to all the elements of the set.

Semi-supervised algorithms. The use of semi-supervised algorithms
is possible when only part of the data is labelled. This corresponds to the
choice of tagging the unlabelled data as part of the learning phase instead
of the preprocessing phase. One of the simplest examples of a semi-super-
vised learning algorithm is self-training. Let us consider, as usual, classifica-
tion. In self-training, one has a base classifier model (e.g., a Naive Bayesian
classifier) which, once trained, can provide for each example both a label
and a measure of confidence in that label. The base classifier is trained on
the originally labelled data; then it is used to infer the labels of a part of
the originally unlabelled data; those data which are labelled with high confi-
dence are selected and added to the original training set, and then the base
classifier is retrained on this extended training set and subsequently used
to tag new unlabelled data. The process can be repeated until all the data
have been tagged and the base model is trained on the largest possible
confidently labelled data set.

4.6.1 Creating labeled data using ML
While semi-supervised algorithms can deal with data that are partially
labelled, sometimes no labelled data can be found at all, and manual
labelling could be infeasible, time-consuming or too expensive. To cope
with this challenge, a clustering-based labelling approach can be used
to create samples of labelled examples. For every category, a cluster of
data points should be formed. Then, all samples will be automatical-
ly labelled with the same labels as their corresponding clusters. Then,

- 64 -

these labelled examples are refined by taking only a subset of examples
that contribute to the goodness of the labelling task. In a second phase,
the labelled examples are used to train a supervised ML classifier. The
classifier will learn the mapping between data points and the categories
and then map a new set of unlabelled data points to the corresponding
categories.

The goal is to create labelled examples to feed the supervised ML clas-
sifier. The input samples are unlabelled data points. To provide labels for
these samples, they are clustered into different clusters representing
the different categories. The approach is not strictly constrained to a
particular clustering algorithm. Different clustering algorithms can be
used, depending on the particular application setting considered. For
example, k-prototypes can be utilised to cluster multivariate time se-
ries sequences with numerical and categorical attributes, while k-me-
doids is applied to cluster samples with categorical attributes. The ‘or-
thogonality’ of the clustering algorithm should be intended as another
amenity of the proposed solution. Each sample within one cluster will
be labelled with its cluster label. Specifically, to label the clusters, the
domain expert should label only the cluster centres based on the known
categories. Then the rest of the samples in a cluster will automatically
take the same label as their centre.

Figure 13:

Creating labeled data using ML

Imput
Samples
Unlabeled event
sequences

Training
set
Labeled event
sequences

Learn

Test

Labelled
samples

Unlabelled
testing
set

High level
activity
log

Process model

Create

Clustering Machine
leaning
classifier

Clustering-based labeling approach Supervised classification

- 65 -

4.7 FEATURE SELECTION

Feature selection is the process of reducing the number of dimensions in
the data vectors, before feeding them to the selected AI model. The purpose
of this process is eliminating non-informative dimensions to decrease the
cost of the AI model computation and, in some cases, to increase the exe-
cution speed. There are multiple popular feature selection techniques, we
focus on the feature selection techniques that are more popular in the AI-ML
domain, starting from filter-based feature selection methods. Filter-based
techniques simply discard dimensions, to discuss more sophisticated
techniques that couple selections with transformations similar to the ones
discussed in Section 3. From the data management point of view, selecting
features always involves projecting the highly multidimensional data space
built at ingestion time to a subspace with a smaller number of dimensions –
in other words, creating views on the data space that correspond to training
data sets to be used for specific ML models.

4.7.1 Dimensionality Reduction
Feature selection is the most straightforward way of reducing dimen-
sionality. However, there are more sophisticated techniques for reduc-
ing the number of input variables: they operate not just as a selection
method for variables but also as a transformation. Among the catego-
ries of dimensionality reduction techniques one can distinguish linear
methods, such as the matrix factorisation techniques, from non-linear
methods, such as manifold learning techniques or more recent tech-
niques based on auto-encoders. Matrix factorisation methods can be
used to reduce the data set matrix (whose rows are the individual data
vectors) into its constituent parts. Examples include the eigen-decom-
position and the singular value decomposition. The most important di-
mensions (e.g., those with largest eigenvalues) are kept, whereas the
less important are discarded. The most common matrix factorisation
technique for ranking the components is PCA.

4.7.2 Principal Component Analysis
To reduce data sets’ dimensionality while preserving the information in
the data, PCA computes a data set composed of new, uncorrelated var-
iables that:

1 are linear functions of those in the original data set, and
2 maximise variance

- 66 -

A set of p original variables can be replaced by an optimal set of q < p
derived variables which are named principal components. While PCA
(and other dimensionality reduction techniques) are usually performed
after the preprocessing stage of the AI-ML life cycle, subspaces with q

= 2 or q = 3 are sometimes used at the data exploration stage to obtain
a visual representation of a multidimensional data set. Many variants of
the PCA technique have been developed to handle different data types.
Although a normal distribution of the data set is usually assumed, PCA
does not, in principle, need any distribution assumptions and, as such,
is very much an adaptive exploratory method that can be used on nu-
merical data of various types.

PCA can be based on either the covariance or the correlation matrix of
the original data. To understand the covariance-based computation
of PCA, let us consider a data set with n data vectors x1, . . . , xp, each
composed of p numerical variables. These data values define a num-
ber p of n-dimensional vectors or, equivalently, an nxp matrix X. Covar-
iance-based PCA computes a linear combination of the columns of X
with maximum variance. For the more mathematically aware reader, we
recall that such linear combinations can be computed by multiplying X
to a vector a = a1, a2, . . . , ap. The variance of such a linear combination is
given by var(Xa) = aT Sa, where S is the covariance matrix associated with
the data set and aT is the transpose of a. To identify the linear combina-
tion Xa with maximum variance, it is sufficient to compute the p-dimen-
sional vector a that maximises aT Sa. Algebra tells us that for this linear
system to have a well-defined solution, an additional restriction must be
imposed. The most common restriction is requiring aT a = 1. This prob-
lem is equivalent to maximising f (a) = aT Saλ(aT a1), where λ is a Lagrange
multiplier. The maximum corresponds to a point where the derivative of
f(a), which is denoted as f i(a) and expresses the slope of f(a), is zero (see
Chapter 6). The condition f i(a) = 0 tells us that vector a that maximises aT
Sa must be a (unit-norm) eigenvector of the covariance matrix S, and λ

must be the corresponding eigenvalue. Any pxp symmetric matrix such
as S has exactly p real eigenvalues, and PCA selects the largest one, λ1
(and its corresponding eigenvector a1). The procedure is iterated for all
the eigenvalues λk, (k = 1, . . . , p), which are the variances of the linear
combinations, and the corresponding eigenvectors ak, which form an
orthonormal set of vectors that is the basis for the PCA-selected sub-
space, whose axes are called the principal components of the data set.

- 67 -

4.7.3 Other Techniques
Manifold learning is used to create a low-dimensional projection of high-
dimensional data, a process that – like PCA – can also be exploited for
data visualisation. The projection is designed to create a low-dimen-
sional representation of the data set whilst best preserving the salient
structure or relationships in the data. Examples of manifold learning
techniques include Kohonen self-organising maps (SOM), Sammon
mapping, multidimensional scaling (MDS), and t-distributed Stochastic
Neighbor Embedding (t-SNE).

- 68 -

AI and ML are iterative methods that uncover valuable information and
insights that are not clearly apparent from within data. The process helps
unlock the data’s full potential to deliver business value decision support
and automation. AI-ML methods use models that training algorithms build
from relevant data to fulfil the desired tasks and objectives, and, therefore,
data are at the core of AI-ML, underpinning its operation and success.
Without relevant data of the required quantity, quality and frequency, AI-ML
would yield inaccurate and potentially unusable output. It is important to
remark that despite the fact that scientists worldwide are developing more
dynamic and adaptive methods, the reality remains that different business
needs are likely to require the use of different AI and ML methods depending
on the user requirements. More importantly, the models built by the algo-
rithms need specific data to address the requirements at hand. Similar to
the human brain, if we would like an algorithm to predict traffic jams on a
particular road, then a sufficient quantity of relevant historical data about
previous traffic jams, dates, times and weather conditions will significantly
help in making more accurate predictions. However, the data required to
predict a traffic jam are different from the data required to predict a football
match outcome, even if we use the same methods.

MODEL TRAINING5

- 69 -

5.1 TRAINING ALGORITHMS

In this section, we introduce the notion of training algorithms and provide
an overview of the gradient descent (GD) approach used by algorithms
that train supervised ML models. This discussion will require some simple
mathematical notation. For simplicity, we will refer to an ML model for clas-
sification, defined by a function Fw : DS→C from the input data space (DS)
to a finite set of classes or categories (C). As an example, the inputs to Fw
could be sensor readings about the rotatory engines presented in Section 1,
and the outputs could be the (IMMINENT and NOT-IMMINENT) labels about
failure of the running example of Section 1.

Here we use the mathematical notation Fw to designate the ML model map-
ping inputs to one of the categories. This notation is useful because the sub-
script in Fw highlights the array w of the ML classifier’s internal parameters,
often called its weights. Of course, the data-flow structure of the computa-
tion performed by Fw depends on the specific ML model used, but the result
of the computation depends on the values of the weights w. For example,
using a multi-stage neural network (NN) as our classifier, the output of each
stage of the network is computed as a weighted combination of the outputs
coming from the previous stage, called activations 7. Activations to the first
stage coincide with the one-hot encoded inputs discussed in the previous
sections.

In essence, model training algorithms are the algorithms that adjust the
weights w of the model so that Fw coincides over S with a target function f:
DS → C, which expresses the correct classification of all points in the input
space.

In terms of our notation, the training set mentioned in Chapter 1 is a set S
of sensor inputs for which the values of f : DS → C (i.e., the right IMMINENT
and NOT-IMMINENT labels), are known. In the remainder of the section, we
outline how training algorithms work.

5.1.1 Gradient Descent Training
GD is a popular family of iterative algorithms for training supervised ML
models like neural networks. GD is based on a simple mathematical no-
tion, which can be expressed as follows: in any smoothly changing (in
mathematical terms, differentiable) function f, a maximum or minimum

7. The reader interested in a general introduction to NNs can consult Michael Nielsen’s free online book (http://neuralnetworksanddeeplearn-
ing.com/).

- 70 -

is always where the function flattens out (i.e., where the function graph’s
slope is zero). Calculus highlights that a function of a single variable f(x)
flattens out where its derivative f i, expressing its slope, is zero 8. For
multidimensional functions f (v), where v is an array of variables, we can
look for points where the gradient ∇ f, the multidimensional analogy of
the derivative, becomes zero. The basic version of GD works as follows:
at each step, the GD algorithm perturbs the ML model’s weights vector
w, applies the model Fw to one or more elements of the training set S and
computes the model’s current classification error Ew (i.e., the difference
between the outputs of Fw on those elements and the elements’ labels).
Then, GD uses the error’s variations across these input elements to nu-
merically estimate ∇Ew and updates w based on it. The model’s classifi-
cation error Ew can be computed as the linear (L1) or quadratic (L2) sum
of the differences between Fw outputs and the ground truths available
as the known labels of the elements of the training S, in our notation f (S).

Informally, it can be said that by this procedure, the GD tries to ‘drive’ Fw
toward smaller values of the error gradient, progressively reducing Ew.
The final goal of GD is to find the point where the ∇Ew gradient is zero,
corresponding to the vector w that minimises Ew on the training set S.

5.1.2 A Closer Look
While the above informal description can be sufficient for a general un-
derstanding of GD-based model training, from the more mathematical-
ly-aware data manager’s point of view, it is also useful to take a closer
look to the computation performed by the software implementations
of GD to estimate ∇Ew. This requires just a little bit of algebra. At each
computation step, given the current weights vector w, the GD algorithm
generates three nearby vectors w1, w2, w3. This way, computing Ew(w)Ew(wi)
wwi gives approximately the directional derivative of the error Ew at w in
the direction wwi. The derivative is indeed the projection of the gradient
∇Ew(w) in the direction of w − wi, or

∇EwEwwi

wwi
 Now, let us assume the fol-

lowing approximation holds:

 Ew(w)Ew(wi) = ∇Ew(w)(wwi). (2)

As the error Ew is itself a scalar, i.e. a single number rather than an array,
this is a system of three linear scalar equations in three unknowns (the
components of ∇Ew). Basic algebra tells us that, if the three vectors wwi

8. The derivative can also be zero in points that are neither a maximum nor a minimum, called saddle points. This is, however, outside the
scope of our discussion.

- 71 -

are orthogonal, this linear system has a unique solution, so it can be
solved numerically by the GD algorithm to obtain the gradient’s com-
ponents.

This computation requires calculating Ew, a computation that can in
principle be done using a single element of S. However, the different im-
plementations of the GD algorithm used in ML software libraries differ
form one another in terms of the number of elements of the training set
S that are used at each step to compute Ew. As intuition suggests, the
higher this number, the higher are both the fidelity of the GD algorithm in
following the error gradient and - unfortunately - its overall computation
time.

• Stochastic Gradient Descent (SGD), is a variation of the GD approach
that computes Ew, estimates ∇Ew and updates Fw using a single
random entry e of S. Frequent updates of Fw introduce a noise-like
“jerky” effect on Ew, but allow for continuously monitoring the ML
model’s performance.

• Batch Gradient Descent (BGD) computes error Ew (and estimates
∇Ew) for each e ∈ S, but only updates Fw after having scanned all of S
(i.e. once for each epoch). Our intuition suggests that BGD’s lower
frequency of updates results in less sign variations in Ew. For our
purposes, it is worth remarking that - due to the granularity of ∇Ew
estimates - BGD is usually implemented in such a way that all the
training set S needs to be in memory at the same time.

• Mini-Batch Gradient Descent (MBGD) splits randomly f into subsets
(the “small batches”), which are used to compute Ew, estimate ∇Ew
and update Fw accordingly. In this case what is used to estimate
∇Ew is actually an aggregation hMB(Ew), where MB is the mini-batch.
Instead of computing the aggregation h as a sum of errors over the
mini-batch, it is common practice of implementations to take the
average, to keep Ew variance under control.

Today, the MBGD variant of GD has become increasingly popular and
widely used for training “deep” ML models. Its update frequency is high-
er than the one of plain BGD; also, its batch size (one of the algorithm’s
hyper-parameters) acts as a control over the learning process. Small
batch size values may give faster convergence at the cost of introducing
noise in the training process. Large values give a learning process that
converges slowly but provides accurate estimates of Ew gradient.

- 72 -

5.1.3 Federated Learning
The variations of the GD training algorithm described above are all cen-
tralized: all the training set S is in a single place and all of it is consid-
ered for extracting batched for the gradient’s computation. In principle,
the GD algorithm can be made parallel by using multiple batches B at
the same time, and training the the ML model on multiple processors.
Parallel implementations of GD should not be confused with federated
learning, which is targeted to addressing data privacy and security as
well as data access rights.

Federated learning is based on a different notion: multiple nodes hold
each a part of the training data S, without sharing it. In terms of our
notation, the training set S is partitioned into multiple local training sets
S1,....Sn held by their respective owners, without explicitly exchanging
data samples. The general principle of federated learning consists in
training local models on local data samples and exchanging the mod-
els’ internal parameters (e.g. their weights) at some frequency, in order
to generate a global ML model shared by all nodes. In federated learning,
the local training set’s parts S1,....Sn are typically heterogeneous and
their sizes may span several orders of magnitude. Moreover, the part-
ners involved in federated learning may be unreliable as they are subject
to more failures or drop out. There are two major families of federated
learning algorithms.

• Centralized federated learning In centralized federated learning
algorithms, a central coordinating node orchestrates the different
steps of the training algorithm and coordinates the other participat-
ing nodes during the algorithm’s execution. The coordinator is re-
sponsible for the nodes selection at the start of the training process
and for aggregating of the received model updates.

• Decentralized federated learning In decentralized federated learning
algorithms, participating nodes collaborate in a peer-to-peer fashion
to obtain a global ML model. This organization aims to prevent sin-
gle-point failure.

- 73 -

5.2 AUTOMATIC ORGANIZATION OF DATA

AI/ML models help to better understand data and uncover patterns and
information hidden within it, to provide additional valuable insight. Hence, it
is no surprise that one of the key challenges we first encounter when dealing
with data, both structured (numerical or categorical data) and unstructured
(text data), is the need to group together similar objects that the data rep-
resents. These groups will contain the objects that are more similar to each
other than those in other groups based on some attributes of the objects.
In many cases, the user does not have a view of the groups themselves or
indeed the number of distinct groups. Hence, clustering the objects that the
data represents provides an initial understanding of the data, that will help
with further analysis. For example, let us consider a call centre for a retail
bank, that receives a large volume of calls from customers. If the bank’s call
centre manager is planning training topics for his employees, then grouping
the calls together in groups based on similarity will show the topics that are
generating calls, and the volume of calls associated with each topic. This
insight will help the bank focus the training on areas of importance to the
customers, and help to provide a better service. This kind of grouping or
clustering could also uncover topics that the manager may not have previ-
ously anticipated. In AI/ML, a clustering algorithm is a technique or method
used to automatically group the objects that the data represents into dif-
ferent clusters based on their similarities. This is known as unsupervised
learning.

- 74 -

5.3 GENERATING NEW DATA

It is possible to generate brand new data using certain AI techniques. These
techniques are able to produce augmented data, i.e. synthetic training data
of any size, targeting applications where requirements and results depend
on greater quantity. You can use synthetic data when you are required to
train an ML model requiring a larger amount of data than what you have,
or to cover a different set of data points that have been too difficult to ob-
tain by normal means. Synthetic data can be produced from any type of
data including numbers, text, images and sounds. Other than for training
purposes, new data requiring creative thinking can be produced in this way.
Creating new art pieces, music or writings is possible using ML models that
can learn the patterns from data made from the same creator.

- 75 -

- 76 -

There are certain parameters which define high level concepts relating to ML
models, such as their learning function or modality, and cannot be learned
from input data. These model parameters, often called hyper-parameters,
need to be set-up manually, although they can be tuned automatically by
searching the model parameters’ space. This search, called hyper-param-
eter optimization, is often performed using classic optimization techniques
like Grid Search, but Random Search and Bayesian optimization can be
used. It is important to remark that the Model Tuning stage uses a special
data set (often called validation set), distinct from the training and test sets
used in the previous stages. An evaluation phase can also be considered to
estimate how the model would behave in extreme conditions, for example,
by using wrong/unsafe data sets.

AI Model Tuning in a Nutshell: Apply model adaptation to the hyper parameters of
the trained AI model using a validation data set, according to deployment condition.

AI Model Tuning in our Running Example: ACME data scientists run the 2D RNN
model trained for fault prediction on an additional validation dataset and choose
the best values h, k for the RNN’s tensor dimensions.

6.1 MODEL HYPER-PARAMETERS

Model hyperparameters represent a higher-level set of variables controlling
model design and architecture choices as opposed to the learnt data- or
feature- level parameters capturing the content of the data and their char-
acteristics and structure. Hyperparameters typically determine mathemat-
ical representation, apparatus and operation logic as well as various algo-
rithm-level choices that decide about the complexity, efficiency, breadth
and depth of the optimisation process underpinning the model training and
testing.

Hyperparameters always accompany virtually every ML model, although the
extent to which the model implementation software exposes their control to
the user varies enormously, in part due to the model’s intrinsic complexity
and in part to different software engineering strategies. The drive towards

PARAMETERS
FOR MODEL TUNING6

- 77 -

AI adoption increasingly sets the tendency to automate setting of the
strongly correlated choices to limit their ambiguity and uncertainty for user
convenience. From the user’s perspective, hyperparameters may not even
be visible at first, as the models are always preset with the most common
default hyper-parameter choices. This is both an advantage and a risk in
practical applications; on the one hand, such a model build can be instantly
executed without much knowledge about it, but on the other hand, great
models with the wrong hyperparameters can be prematurely discarded
based on preliminary, ballpark performance estimates.

ML models vary significantly with respect to the number of hyperparam-
eters and the sensitivity of the model’s performance to their choices.
Traditionally, ML models evolved from virtually fixed hyperparameterless,
stable settings like in linear regression; to a setting with no more than a few
hyperparameters like in k nearest naughbour (KNN), decision trees, naive
Bayes or Gaussian mixture; and finally up to larger and larger numbers of
hyperparameters in layered composite network models, where each layer is
effectively controlled by its own set of hyperparameters. With this evolution,
an individual ML model de facto becomes an ever-growing family of model
version choices – hence its growing sensitivity of predictive performance on
ever more expanding, subtle sets of model hyperparameters.

In general, models with a small number of hyperparameters are preferred,
as long as their predictive power and application flexibility are not com-
promised. Sometimes mathematical ingenuity can be used to eliminate
hyperparameters risk-free, as in the case of Gaussian process generalising
multivariate normal distribution-based models. However, this is usually
achieved at the expense of significantly grown computational complexity,
with only marginal improvements in predictive performance. The practical
strategy that emerges from the compromise of these colliding tendencies
of exposing the hyperparameters to model fine-tuning is that the ML model
release, however complex, has identified several key hyperparameters that
account for the vast majority of its modelling and predictive capabilities,
and the user is presented with the option to optimise the model along with
these hyperparameters if required.

- 78 -

6.2 HYPER-PARAMETERS OPTIMIZATION
STRATEGIES

Each configuration of hyper-parameter values set to train and test the ML
model represent just a single solution evaluated by the model testing er-
ror obtained through the cross-validation or other the generalization error
estimate method. Since the whole cycle of model training and testing is
typically a costly operation, optimization of the hyper-parameters is rarely
a search for an optimal set of hyper-parameters’ values that yield the best
predictive performance, but for practical reasons often to quickly find
a good and stable set of the hyper- parameters’ values that consistently
return good predictive performance of the model. Depending on the cost
and time of an individual model build hyper-parameter optimization can
be, and typically is, aided by the parallelized evaluation process but what is
the most characteristic about this optimization is a very careful selection
of the hyper-parameters’ values before passing them for model build and
the evaluation. For this reason among the most common optimization of
the hyper-parameters are the grid search, probabilistic Bayesian and the
greedy-linear iterative methods.

6.2.1 Grid search method
Grid search method’s principle is to cover the whole domain of every pa-
rameter with a regular grid of a couple of values and then evaluate all the
combinations of such grid. Given n hyper-parameters to optimize and
a grid of size k, there are however still kn evaluations required to com-
plete such grid search. The grid size can obviously be reduced if nec-
essary, some conflicting or impossible combinations may be manually
excluded from the evaluation to speed up the search. The real problem,
though, is that the grid search does not in general exploit the previous
iterations’ to improve the next iterations’ performance. For this reason,
given the growing cost of each model evaluation, the iterative probabil-
istic or greedy search methods are more commonly used in practical
applications.

6.2.2 Bayesian hyper-parameters optimization
Bayesian optimisation of the hyperparameters tries to build a simple
probabilistic model of the relationship between the hyperparameter val-
ues and the predictive model performance and then uses it to improve
the selection of the next parameter set based on all the previous set
evaluations. Each new evaluation yields more reconciliation evidence

- 79 -

between the probabilistic distribution model and reality and allows ex-
perts to rather quickly find the model-inferred near-optimal choices.
The Bayesian hyperparameter optimisation method is very quick. How-
ever, its performance still depends on the accuracy of the probability
distribution assumptions, which must still be made manually for each
parameter (although Gaussian is most commonly assumed by default).

6.2.3 Greedy-linear iterative search
Greedy-linear iterative search is a hybrid search that combines the ad-
vantages of the grid and Bayesian searches. Starting from the default
hyperparameter values, it carries out the search sequentially, optimis-
ing single parameters one at a time with other parameters fixed. Once
the individual hyperparameter is optimised, its value becomes fixed and
the next hyperparameter is optimised the same way. These rounds of
single-parameter optimisations continue in a loop until an entire round
occurs without a single parameter change. Note that for individual pa-
rameter optimisation there is the freedom to use a grid search, Bayes-
ian or any other search. The search may therefore flexibly incorporate
various desired elements of other optimisation techniques, and, since
it typically completes within just a few rounds, it can be considered
near-linearly complex with respect to the number of hyperparameters
to optimise.

- 80 -

6.3 TRANSFER LEARNING

ML methods have proven to be useful in analysing a vast amount of data
in its various formats to identify patterns, detect trends, gain insight and
predict outcomes based on historical data. However, ML models are chal-
lenging to reuse from a domain due to the change in the data distribution.
Moreover, training ML models with good accuracy requires a massive
amount of labelled data, which is expensive and time-consuming. New
approaches were developed that can reuse and adapt existing model(s).
These techniques fall under the collective name of transfer learning (TL).
More specifically, TL is a methodology to transfer knowledge learned from
one model to another. For example, in the case of a model trained to detect
a specific type of object from images, the knowledge it has gained can be
transferred, via TL, to another model that detects a different kind of object
from images. TL has achieved excellent results in many domains, including
image processing and NLP. When reusing ML models, understanding data
distribution between the two domains is essential. The difference between
the distributions may result in lowering the model accuracy.

- 81 -

- 82 -

7.1 MODEL DEPLOYMENT

Imagine that you developed an ML model which can forecast the likelihood
of a particular outcome with a certain confidence score. It is a good step,
but the process is not finished yet. In a perfect world, you want your model
to evaluate real-time cases to be able to make decisions accordingly. This
is where model deployment comes in. The deployment and maintenance
of ML models is one of the most critical challenges that organisations face
today. Numerous data science projects fail to get into production because
of the many strains in the deployment phase which obstruct the entire
process. These challenges originated in the dynamicity and complexity of
the environment where heterogeneous and diversified components interact
with one another in such contexts.

For applying ML in practice, it is a critical task to evaluate and adapt the
existing, established software engineering practices that ML literature has
thus far not taken into proper consideration. Actually, ML deployment is a
topic that is completely unrelated to data analysis, model selection and
model evaluation; therefore, it is not properly received by those without a
proper background in software engineering. Recently, the interest in es-
tablishing substantial methods and practices in the development of ML
systems has started to grow. The deployment of an ML model is referred to
as the process of integrating an ML model with an existing production envi-
ronment in which an input is processed to generate an output. The purpose
of deploying a model is to enhance the ability to make predictions through
the use of the model which is already trained and made available to different
systems. The ML deployment is strongly dependent on the architecture of
the overall system, the set of iterations and configurations of its software
components. There are a couple of requirements that need to be satisfied
before a model may be considered ready for deployment:

• Portability deals with the ability of the model, in terms of software and
hardware, to be transferred from one system to another. This peculiarity
will be important in evaluating where the system will be deployed.

• Scalability has to do with the system’s ability to grow over time. A model
is said to be scalable when it does not require modifications and rede-

MODEL ADAPTATION,
DEPLOYMENT AND MAINTENANCE7

- 83 -

sign to maintain performance unaltered.

A similar parallelism exists with cloud workloads, where companies must
decide to deploy on premise, in the cloud or adopt a hybrid approach; the
same decision must be made for ML algorithms. It is not an easy choice,
as the physical location where ML algorithms are trained and deployed can
affect their performances as much as the algorithm itself.

7.1.1 Cloud-based Deployment
The use of the cloud for the deployment of ML models is the most com-
mon method. Cloud platforms offer a range of services that develop-
ers and data scientists can use to design, train and deploy ML models.
Furthermore, having this support available allows for the transition to
an open and flexible environment where data can be rapidly collected
from the cloud storage, prepared and injected directly into the model.
The downside of this approach is that it could be extremely demanding
to move the data from where they are generated into the cloud storage
where they are used for developing and training the model. Sometimes
it is difficult if not impossible to move large amounts of data in a cen-
tralised repository due to high latency, bandwidth limitations and exces-
sive costs. In modern contexts where an increasing number of devices
are connected to each other and hundreds of gigabytes – if not tera-
bytes – are generated per day, those issues represent a real challenge
that can force the developers to make unwanted compromises. In fact,
the transferring into the cloud of a selected data ’sample’ for the model
training and maintenance is often the only alternative when the trans-
fer of a large amount to a centralised data centre is not a reasonable
choice. As a result, the efficiency in obtaining reliable information from
newly generated data in real time is restrained and the ability to analyse
a combined data set comprehensive of newly generated and historical
data is diminished. Furthermore, the moving of data across jurisdictions
can increase privacy and geopolitical concerns.

7.1.2 Edge-based deployment
It is estimated that the daily amount of data generated from personal
or enterprise IoT devices is around 250 petabytes, and as mentioned in
previous sections, the latency of the network can have a severe impact,
especially for IoT devices. As an example, autonomous vehicles need to
collect and analyse a massive amount of data from their own sensors
and from the nearby devices. If the reaction time of the vehicle depends
on the response time from the computing core of the network, every

- 84 -

minimum delay could cost lives. For those specific cases it is mandato-
ry to adopt a different approach. Edge computing lends itself perfectly
to managing these data as it provides a sufficient incentive to collect
and process data on the devices themselves rather than in the cloud
or in a remote data centre. In short, the key benefits for this approach
are two: real-time analysis of data and reduced data transmission to
the cloud. As a result, IoT devices are less affected by latency and have
faster reaction to status changes. In this context, edge computing can
provide predictive analytics on the edge devices.

One of the options for businesses is to design and train ML models in
the cloud and upload the algorithm onto the device to execute close to
where data are generated. This method guarantees the flexibility and
simplicity of developing in the cloud and the efficiency of running direct-
ly in the proximity of the source data.

A second option is the development and training of the ML method on
the device itself, using the collected data passing through. The system
relies on intelligent edge devices providing the required functionalities
and interfaces for development.

These approaches partially solve the problem of latency, but they also
present accuracy problems. Algorithms developed on the cloud and
brought to the edge are based solely on data samples, while developing
accurate ML models only on the edge could be burdensome because
those devices are designed and optimised to work with minimal re-
sources and low power; moreover, the amount of data they can store for
analytics can be tight.

A possible solution could be the hybrid approach, allocating computing
resources at the edge. Those resources will reside in the near proximity
of the devices but not within; this will ease the burden of transferring
data from a centralised system. The data analysis could be performed in
a distributed way by installing computing resources and storage in the
proximity of the devices, such as schools, hospitals, banks and others.
This approach offers the most complete solution, allowing the analysis
of a nearly unlimited amount of data of any age and without restrictions
against crossing different geopolitical areas. It follows that this model
can bring the advantages of big data directly to edge computing, and, at
the same time, it allows the application of ML algorithms on distributed
data on all edge-devices in parallel.

- 85 -

7.2 MODEL MAINTENANCE

Data are the most important part of the ML model. Once the model fits
perfectly into the available data set and provides accurate predictions, it is
essential to ensure that the system continues to do so over time, with the
most up-to-date data. As an example, with an ML model for predicting the
real estate market, house prices are read frequently over time, so consider-
ing a model that was trained one year earlier could provide very inaccurate
predictions when used for current market data. In this case, it is imperative
to have up-to-date information for the new training. When designing an ML
model, it is important to understand how and how often the data will change
over time; a carefully designed system takes this into account before de-
ployment to ensure an easy and smooth model upgrade.

7.2.1 Model Drift
An ML model that is running using static data (i.e., data whose statis-
tical characteristics do not change over time), does not suffer a loss
in performance because the data that are used for predictions belong
to the same distribution as the data used for training. Unfortunately, in
most real-world cases, the model exists in a dynamic environment and
so is subject to revision. In this scenario, a concept drift is the perfor-
mance decay of an ML model; at the origin of this well-known concern is
a change in the environment that breaches the initial hypothesis of the
model rather than a contraction in the capabilities of the model itself. A
model degrades over time due to various factors and variables, depend-
ing exclusively on the context in which the algorithm works. The mod-
el performances decrease over time, and, with a certain rate, both are
difficult to predict in advance. For this reason, it is essential to keep all
these factors in mind when diagnosing the problem and determining the
most effective method for retraining the model. It is important to under-
stand how to track the drift. There are several approaches, but, depend-
ing on the data and the prediction algorithm, not all the solutions may
be suitable for a specific case. The most intuitive way to identify drift is
to explicitly determine that the model performance is impaired and to
try to quantify the deterioration. Measuring model accuracy on live data
can be problematic, as it is necessary to access both the predictions
generated and the ground truth values (i.e., the information generated
by direct observation), but predictions may not be stored or those ob-
servations may not be available.

- 86 -

Another way to address the problem is to infer the drifting. Because a
decay of the model is expected due to the deviation of the serving data
with respect to the training model, a comparison between these two
distributions can give an estimate of the drift. This solution is particu-
larly useful when it is not possible to extrapolate the ground truth from
direct observation due to the nature of the data generated.

7.2.2 Model Retraining
We have defined the model drift and how to recognise it; now we need to
understand what the next step is.

Usually, a model that has been deployed for production should be the re-
sult of a rigorous validation process; the resulting algorithm is the best
prediction method for a given type of data. Since the performance in
predictions decays due to a variation of target data, the model’s retrain-
ing should not involve any changes in the model generation process. In
fact, it is simply a matter of relaunching the process that generated the
first instance, but on a new training set. The solution is new training per-
formed on a new data set that reflects the evolution of the environment
and the current reality. At this point, it is necessary to understand when
to train and which new data set to use. The problem itself could directly
provide an answer to the previous questions. Suppose you want to de-
velop a model that generates predictions about the university courses
students enrol in. This model can be run on students currently attending
the last year of high school in order to prepare the entrance tests for
the various universities. This kind of prediction must be done annually;
it would not make sense to repeat the process more frequently as the
data available for a new training would not exist. Therefore, we can only
decide to retrain our model at the beginning of the academic year when
we have the new enrolment data. This is an example of periodic retrain-
ing. In general, sudden changes in training data require retraining often,
even daily or more. Slower variations will require monthly or even annual
training. Following are a few approaches regarding methods that can be
adopted in different contexts:

• ONE-OFF. This method is used when a continuous retraining of the
model is not required but can be done periodically. In this case the
model is put back into production once an ad-hoc training is carried
out and the model stays in place until becomes obsolete again.

• BATCH. This method allows you to have a constantly updated ver-
sion of the model. The model is updated with a subset of the data at

- 87 -

a time without necessarily using the entire set at each update. This
method can be used when the model is frequently used but does not
necessarily require real-time responses.

• ONLINE (real-time): Real-time training is possible with online ML
models. The model is trained at every data set submission and is
expected to provide a prediction for this data set in (near) real time.

The privileged option is to have an automatic drift management mech-
anism in case there is availability of technologies and infrastructures
for monitoring the parameters discussed in the previous section. This
operation requires continuous monitoring and a mechanism for trigger-
ing the training process whenever the diagnostics on the active data
diverge from those of the training data. Obviously, the challenge is to
determine the threshold value for the divergence between the two sets.
If this value is too low, there is a risk of having too frequent retraining
without benefits and with high costs. On the other hand, if the value is
too high, the risk of delaying the retraining, which results in a model that
does not perform in production, may increase. A further intrinsic prob-
lem is in determining the correct amount of training data to be supplied
to faithfully represent the changes in the environment being observed.
In fact, even if the world has changed, it could be counterproductive to
replace the previous training data set with a considerably smaller one in
the absence of additional data.

- 88 -

7.3 DATA DISCLOSURE RISKS AND
DIFFERENTIAL PRIVACY IN MODEL
DEPLOYMENT

We now informally discuss some data disclosure risks that arise when out-
sourcing ML models, e.g. by deploying them at the premises of a service
provider, who could gain information from the input data or guess the in-
formation originally used for training the ML model. To better understand
the notion of training set disclosure, we go back to the simple example and
mathematical notation we used to describe training: a model Fw trained on
a training set S for classifying the items of a data space DS into classes of
interest belonging to a set C. This deployment procedure involves a disclo-
sure risk whenever S can be inferred from Fw outputs. Disclosure will happen
if by running or observing F in production, an attacker can reconstruct one
or more entries of the training set S.

One could be tempted to require that computing F in production (i.e., per-
forming the inference) should reveal absolutely nothing about the training
set f . This is unfortunately just a re-phrasing of the classic Dalenius require-
ment for statistical databases, which cannot be fully achieved if enough
side information about S is available. However, Cynthia Dwork proposed
more than a decade ago the notion of differential privacy, which, intuitively,
captures the disclosure risk. Dwork’s seminal work has turned the “impossi-
ble” Dalenius requirement into an achievable goal: observing the execution
of Fw, the service provider should be able to infer the same information about
an entry e ∈ f as by observing F ′w , obtained using the training set S − {e} + {r},
where r is a random entry. This will provide the owner of e - assuming she has
something to gain by knowing the result of F - with some rational motivation
for contributing e to the training set, as she will be able to deny any specific
claim on the value of e that anyone could put forward based on F (a notion
called plausible deniability). The most investigated approach to achieving
differential privacy consists in introducing a degree of randomization in the
computation of F, making [F(x)] a random variable over DS. Techniques vary
on how and where to inject such randomization, depending on the nature of
Fw.

Often, random noise is simply added to the training set, with zero average
and a standard deviation σ =

,

While the discussion above provides a general idea of data randomization

- 89 -

to prevent disclosure, some additional remarks may be of interest for the
mathematically-aware data manager. The probability density often used for
such noise is the Laplace distribution:

The distribution of this random variable is “concentrated around the truth”:
the probability that [Fw] is z units from the true value drops off exponentially
with εz. This randomization introduces uncertainty, as the provider no longer
computes Fw but the value of a random variable [Fw] with Laplace distribu-
tion whose average coincides with F.

 −|z|
σ p(z) = e (3)= e −|z|e

- 90 -

8.1 CASE STUDY 1 :
AUTOMATIC THE DETECTION OF
TRAFFIC INCIDENTS

Traffic is known to be one of today’s significant issues affecting large cities
and one of the main challenges for smart cities. Reducing delayed notifica-
tion time for traffic incidents has a direct impact on reducing the fatality rate
and reducing the cost of roadside assistance. Traffic-related data are being
collected en masse from traffic sensors deployed in big cities and, more
recently, from social media like X and Weibo. As such, automatic detection
of traffic incidents has attracted much interest from traffic control centres
over the last decades. The goal is to detect the occurrence of an event caus-
ing traffic congestion, including recurrent and non-recurrent congestion.
This interest is driven by the need to develop automated incident detectors
– an asset in traffic management, as they can make appropriate and timely
decisions based on the analysis of collected real-time data.

8.1.1 Data ingestion
The data used in the case study are at the macroscopic level; they are
stored in a data hub which receives sensors’ data from a road section
containing multiple lanes going in the same direction (i.e., a road link)
and averages the traffic variables for every two minutes. Since the data
are aggregated, there are no privacy issues at the individual level. Table
1 shows an example of a reading stored in the data hub.

Table 1:

Traffic Data Structure

Data Structure 101000701,2017-01-01 00:01:05+01,98,120,19.6,0,46

ID of road network link 101000701

Data/time of measurement 2017-01-01 00:01:05+01

Average speed (km/h) 98

Vehicle flow (Vehicles per hour) 120

Headway(average time between vehicles, in seconds) 19.6

Occupancy (percentage of time that road is occupied by vehicles) 0

Travel time for this link, in seconds 46

8 CASE STUDIES

- 91 -

A road link is positioned between two points in the road and has a single
direction, clockwise or anti-clockwise, and the distance each road link
covers is different. Junctions may contain one or more links, each one
covering a short distance, while road links connecting junctions cover a
longer distance.

8.1.2 Data exploration and pre-processing
The data received from the data hub still have certain limitations. There
are periods where some road links have missing readings, making the
detection of events rather difficult. Also, some readings contain missing
data (e.g., occupancy data tend to be missing more often than speed
data). Missing values are, however, typical of reproduction (as opposed
to synthetic or lab-based) sensor networks.

In preprocessing, infrequent missing values are filled in by averaging
between the preceding and the following readings. Detection from lo-
cations with an increasing number of missing values is not considered.

We consider automatic event detection a classification problem, which
requires labelled data to train the ML model. A list of officially reported
traffic events during a single period could be used to provide the ground
truth for model training. Therefore, reported events from the period of
the traffic readings are collected. Any event that had no effect on road
conditions is discarded, as was any event whose readings were irregu-
lar or unavailable. For each reported event, the area where it took place
(encompassing multiple road links), a single starting time and expected
end time are specified.

Moreover, it is not feasible to use the full data set for training and test-
ing, as most of the data set will contain no events. A common practice
in the field of traffic incidents detection is considering the readings of
a certain number of hours (e.g., two hours) before and after an event.
This will ensure capturing all the events and the different variations from
non-event readings.

We remark that events include – besides accidents – slow-downs due to
traffic congestion; both start and end times are approximate.

Regarding the event’s location, the road link that is most affected by the
event is chosen. We get this information from the speed values along
with the duration of the event. A manual check of all events used for

- 92 -

training and testing is also conducted to adjust their timings. We remark
again that using the reports without any adjustments could result in in-
accurate training and test sets. This problem is commonly encountered
in traffic data analysis and has been reported multiple times in the field.

Figure 14:

Temporal Data Sequence

To ease the task of preprocessing the data set, we developed a tool to
select the start and end time of an event visually. The tool shows a plot
of speed values against time during the targeted period and, if available,
a similar plot for road occupancy.

 Data Types
The dataset can be created as a temporal time series by taking traffic
values (e.g., speed) in sequential time periods. Also, it can be created as
a spatial sequence where the traffic values can be taken from neigh-
boring road links at the same time. Another option is to combine both
sequences. Part of the project was investigating the best approach.

 Time series length
One of the variables that should be set by us is the fixed length of the
time series. In the AID domain, we receive readings in fixed periods,
which provides us the ability to create a time series of any length. As
presented in Figure14, each time series is a continuation of the one
preceding it with a sliding window of 1 which mimics a real time AID
problem. By assuming a real time problem, we assume no knowledge of
an event’s duration; hence, we are limited to selecting the most suitable
length which provides the best performance. After selecting the most
suitable length, there is no added value in using other lengths.

97 96 95 93 92 91 88 88 88 87 0 No Event

96 95 93 92 91 88 88 88 87 68 1 Event
Ti
Ti+1

ti,1
ti,l ci

ti+1, 1 ti+1, l
ci+1

Window Slide +1

- 93 -

8.1.3 Model Training, Deployment and Maintenance
After obtaining data for training from the data hub, preprocessing them
and adding the labels, it is possible to start training the ML model. A
variety of algorithms can be used, and at this stage the data scientist
can explore and test the various options and compare their results using
specific criteria. The criteria included overall accuracy, incidents detec-
tion rate and false alarm rate. By comparing multiple algorithms, rota-
tion forest did yield the best results, justifying its use to create the ML
model.

A system deployed in the cloud is made ready to accommodate the ML
model by pulling the readings from the data hub, preprocessing the data
and then feeding them to the model, which outputs the possibility of an
event happening. The result of the ML model is exported to the data hub
to be matched with the related reading. An external dashboard is also
connected to the data hub to enable the traffic control centre to view
the readings and any potential events.

There is also a feedback mechanism to tell the system when the predic-
tions were not accurate. The feedback is used for the periodic retraining
of the model to increase the performance with time.

- 94 -

8.2 CASE STUDY 2:
SOCIAL MEDIA (X) ANALYSIS

The growth in social media applications and the exponential rise in their use
have led to the accumulation and availability of a huge number of social
media data that cover a variety of topics that are important to the platforms’
users and beyond. Discussion topics on social media platforms can provide
news, opinions, views, feedback and more on a wide range of subjects from
politics and the economy to reviews and feedback on products and servic-
es. The opinions expressed and the sentiments associated with them can
provide valuable insight into the feelings of communities and individual us-
ers. This information can be valuable to businesses, customer service and
even government organisations that serve and support their communities.

As a result, the harvesting and analysis of social media content such as X
posts have become extremely valuable to many organisations to help them
better understand their users and communities and indeed understand
their sentiments and views, almost in real time.

One of the first steps towards achieving this objective is to harvest the data;
in this case, we will look particularly at X. The platform has a large online
community where opinions and sentiments are expressed in as close to real
time as possible. Anyone can have an account on X; many news agencies,
journalists, politicians, TV broadcasters, businesses, government organisa-
tions and more use X as a means of communicating with their constituen-
cies, users, customers and friends. Hence, X posts offer a huge opportunity
to analyse and better understand certain communities. X enables us to de-
tect their interest, as well as changes in that interest, allowing us to adjust
for user, customer and community needs quickly.

8.2.1 X posts harvesting
X offers APIs at different price points to enable the collection of X posts
and additional related data, based on specific terms and conditions
about how the data can be used and what controls and restrictions ap-
ply. The different types of developer account pricing provide different
levels of access in terms of the amount of data that can be collected
over a certain time period. There are also restricted but free methods
to access a limited number of X posts. It is important to adhere to the X
terms and conditions and use policies to avoid discontinuation of ser-
vice or even additional actions against any misuse.

- 95 -

Developers can write software tools referred to as harvesters, to collect
relevant X posts and any additional information, such as author ID, re-
posts and location information. The X posts can be harvested by area,
keyword or author, among others. The harvester can run periodically and
collect data in either micro- or macro-batches depending on user re-
quirements and the number of X posts being collected. Once the data
are collected they can be stored in the relevant storage infrastructure.
There are also rules and regulations that apply to the archiving and use
of X posts.

8.2.2 Classification
Classification of social media messages (such as X posts) is one of the
most fundamental and useful data analysis techniques and can be used
for many applications. Uses include, but are not limited to the following:

• Sentiment analysis on customer service. Can automatically classify
short messages as positive, negative or neutral. This helps to auto-
matically monitor sentiment changes about products and customer
services. This sentiment analysis can also be more refined, classi-
fied to more detailed categories and providing richer information
(e.g., social media messages classified as outraged, angry, upset,
unhappy, neutral, happy, thankful, satisfied, excited, etc.).

• Message filter. Can automatically filter out irrelevant messages and
ignore them. For example, if Company A would like all the social
media messages relevant to it, a keyword-based search will return
messages including those keywords. However, not all messages in-
cluding these words are relevant to Company A. A filter will classify
those messages into one of the two categories: relevant or irrele-
vant.

• Topic classification. Classifies all relevant social media messages
we might want to know more about (e.g., whether they are talking
about fault for services/connection, complaints about wrong bills,
inquiries about new products, or recommendations to friends about
the good service). This task can be done by message classification,
as well.

To realise classification, three stages are involved: training the model,
testing the model and applying the model on the fly.

• Model training is the process to build up a classifier model using the
training data. The training data must be tagged manually with target

- 96 -

categories (e.g., positive or negative in sentiment analysis; relevant
or irrelevant for a filter). During the model training process, the mod-
el extracts and learns the patterns from the tagged messages, and
the trained model will be tested and used in the later stages.

• Model testing is the process that ensures the generated model from
stage one satisfies our requirements, mainly in terms of accuracy
(e.g., the model can classify 95% of the messages to the target
categories correctly). This is done by applying the generated model
to the testing data. The tested data need to be manually tagged,
as well, to compare the model output (as category) with the target
output (tagged manually). This testing process might happen itera-
tively together with the training process. We obtain a model from the
training data and test it on the testing data. If the accuracy is lower
than our expectation, we might need more training data to refine
the model, or we might consider using another technique of classi-
fication to see whether other techniques can complete this classifi-
cation task better. This iterative process continues until we reach a
satisfactory accuracy.

• Applying the model means using the satisfied model on real-world
data and generating classification results automatically.

As we mentioned in the testing stage, a high accuracy might be our
main objective to obtain a good classifier model. If we can not reach our
expected accuracy, there might be two reasons. Either the training data
is not enough in which case we need to increase the number of train-
ing data; or the classification technique we are using is improper to this
application which we need to improve the classification technique. The
outcome of the classification can be then be stored in the storage infra-
structure as attributes of the original social media content (X posts) or
any other format depending on the application.

8.2.3 Visualisation
Once the analysis has been completed, the results of the analysis must
be displayed in an easy-to-understand format that provides the re-
quired insight for the application. The simplest way to show results can
be to merely show statistics summarising the analysis outcome, such
as the number of users mentioning a company or product or the number
of satisfied customers (positive sentiment) and unsatisfied customers
(negative sentiment). For further, more advanced visualisation, one can
develop their own front-end visualisation to display custom views or use
one of the many available visualisation capabilities and tools – open-

- 97 -

source or commercial. Existing visualisation tools enable the plotting
of data such as time series or events or, indeed, using MAS and GIS
systems. Visualisation tools can also have predefined and easy-to-use
templates providing a plethora of options for almost every use. They
also provide various customisation capabilities for more advanced re-
quirements. Such tools are usually used for better understanding anal-
ysis, insight and decision support.

- 98 -

9 OTHER AI TECHNIQUES

Although very general, the AI-ML life cycle discussed in this document cov-
ers only a part (i.e., supervised ML) of the rich landscape of AI applications.
Indeed, not all AI applications ultimately require ML. Historically, some AI
techniques preceded it. When researchers started to investigate AI, they
were focused on the so-called symbolic techniques like automated infer-
ence and reasoning; ML had not even occurred to them. An example of the
use of AI without ML are rule-based expert systems. Human-defined rules
allow expert systems to perform inferences to a limited extent. Another ex-
ample is syntax-based NLP, where the syntax and semantics of natural lan-
guage are encoded into algorithms (parsers) used to interpret and generate
language. In 1985, this type of AI received the name of Good Old-Fashioned
Artificial Intelligence (GOFAI). In many cases, symbolic reasoning is suffi-
cient, especially if a large amount of domain knowledge is made available
in the form of rules. Another advantage of using the symbolic form of AI
instead of ML or DL is that there is no black box problem. As we discussed
in Section 1.7, ML-based decision-making may lack transparency, and bias
hidden in the training data may lead to unfair decisions. Besides symbolic
techniques, other areas of AI rely on statistical or algorithmic techniques
rather than on ML. In this section we quickly review some non-symbolic AI
techniques like time series forecasting and optimisation that do not rely
on ML but still need sound data management practices. Our introduction
will not cover other important meta-heuristic techniques that come under
optimisation, such as evolutionary algorithms, tabu search, simulated
annealing or swarm intelligence. The interested reader should consult the
technical literature.

9.1 PREDICTING TRENDS FROM DATA

Many natural phenomena vary with time in a non-trivial way. Applications
may need to find out the behaviour of such phenomena in the short or me-
dium term. This kind of analysis is known as time series forecasting. For
instance, one may want to predict, with some approximation, the trend of
the air cargo market over the next six months. It is possible to address this

problem by observing the behaviour of the phenomenon in the past: if its

- 99 -

behaviour in a specific time period is correlated to the behaviour of the fol-
lowing time period, then this insight can be used for prediction. For instance,
looking at the water level of the River Nile across time has been used for
centuries to predict forthcoming floods and droughts. Moreover, different
phenomena are often correlated to one another: one can observe, for in-
stance, that the trend of the cargo market follows the trend of the global
economy with just a few months of delay. Thus, the global economy can be
used to predict the behaviour of the cargo market. This is an example of how
knowledge of correlations among different time series can help forecasting.
The difficult part in forecasting in the mentioned examples is the discovery
of significant enough correlations that are hidden in the data. Noisy data
are particularly difficult to deal with. Sifting through large volumes of data
in search for regularities thus requires powerful data-mining techniques.
There are multiple models and methods used as approaches for time series
forecasting. The simplest series forecasting setting is the univariate time
series forecasting problem, where data contain only two variables: time and
the value to be forecast. In the multivariate time series forecasting method,
forecasting problems contain multiple variables, one of which is again time.
Modelling techniques include the following:

• ARIMA model. ARIMA is a combination of three different models, AR,
MA and I, where ‘AR’ reflects that the evolving variable of interest is
regressed on its own prior values, ‘MA’ states that the regression error
is the linear combination of error term values from preceding times, and
‘I’ expresses the fact that data values are replaced by the difference
between themselves and the previous values.

• Autoregressive conditional heteroscedasticity (ARCH) model: The ARCH
model is the most volatile model for time series forecasting, capable of
catching dynamic variations of volatility from time series.

• Autoregressive model or VAR: This model computes the independencies
between various time series data as a generalisation of the univariate
autoregression model.

From the data assets’ point of view, time series analysis requires data inges-
tion at regular intervals, which is best implemented via stream platforms for
big data.

- 100 -

9.2 RETRIEVING THE RIGHT
INFORMATION FROM LARGE
REPOSITORIES

Due to the astronomical growth in data generation and the move towards
open data initiatives, there is now an enormous number of data sources
available to choose from. However, due to the myriad of choices, it becomes
impossible to select what is relevant to the problem at hand. For instance,
the internet consists of billions of pages of information, and it would be im-
possible to find the exact information you are looking for without the help of
search engines to rank the pages in order of relevance.

Those engines use the links pointing from one page to another: they are
based on the premise that the pages with the most references from highly
referenced pages are the most relevant. Ranking algorithms of this kind can
be used to retrieve, by relevance, documents from any repository and to
extract value from the information, instead of drowning in the deluge of data.
Information retrieval techniques can be used with all kinds of data reposito-
ries: text documents, images and videos.

- 101 -

9.3 A.I. OPTIMIZATION AND DATA

Optimisation is an important branch of AI that is often overlooked. It revolves
around making optimal decisions, and data play an important role in that.
We make decisions every day: for example, choosing the best route to com-
mute, buying better-value products or investing to get maximum returns.
This is also the case for businesses and large organisations. A logistics
business with a large fleet of vehicles, for instance, needs to make a daily
decision about optimal vehicle routing; optimisation in this setting means
minimising travel time and maximising the number of deliveries. Sub-op-
timal routing may result in unnecessary travel and poor customer service.
Similarly, in teleco, choosing the best sites to deploy mobile cells is impor-
tant. Deploying mobile cells in less-ideal locations can have negative cost
and revenue implications. This concept generalises to many other sectors
and businesses. Logistics, hospitality, airlines, oil and gas, health, education,
and government – they all have to make the best possible decisions to run
their organisations efficiently, provide the best service to their customers,
minimise costs and maximise benefits. In the example of a logistics busi-
ness, it may be trivial to find the best routes for an organisation with only
one or two vehicles. However, with a larger fleet, the possible combination
of routes becomes infinitely large, and the routing complexity increases:
the decision about where to route one vehicle can depend on other vehicles’
potential routes, making it impossible to utilise a manual routing process
to find the best options. AI optimisation intelligently searches through the
complex set of options and provides optimal (or near-optimal) decisions to
implement.

As we have seen in the previous chapters, data availability is an important
factor in decision-making and should be given careful consideration when
formulating an optimisation model, as well. There are three main compo-
nents of an optimisation model:

1. Decision variables

2. Objectives

- 102 -

3. Constraints

In our example of the logistics business, decision variables define a set
of routes that have to be optimised. The two potential objectives are to
minimise total travel and maximise delivery volume. And the potential con-
straints are the capacity of each vehicle and their hours of operation. A clear
input data about the domain is crucial to define each of these components.
For example, location data about the customers as well as street-level dis-
tances are required to specify the routes. Real-time or historical data about
traffic and any ongoing construction works could also be useful to calculate
the expected travel.

Finally, data about the vehicles’ size and speed as well as drivers’ roster data
are required to calculate the constraints involved in optimising routes. In
many real-world scenarios, data are created with the mindset that they will
be interpreted by humans, often lacking the required details and rigorous-
ness to be processed automatically. To capitalise on the data for AI optimi-
sation, it should be carefully created to enhance the entire decision-making
process.

Figure 15:

Othe AI Techniques

Constraints

Objectives

Decisions

Data
Optimisation

Minimise cost
Maximise value
Optimise business goals Optimal Setup

Optimal Design
Optimal Solution

Capacity constrains
Legal and social limitations
Business Rules

- 103 -

- 104 -

